Abstract:
The invention disclosed herein includes amperometric glucose sensors having electrodes formed from processes that electrodeposit platinum black in a manner that produces relatively smooth three dimensional metal architectures, ones that contribute to sensor reliability and stability. Embodiments of the invention provide analyte sensors having such uniform electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals.
Abstract:
A simple sensing device includes a case with one or more indicators to indicate levels of an analyte such as glucose. The sensing device for self-monitoring an analyte includes a single, flexible case adapted to adhere to a skin of a patient. It also includes a printed circuit board assembly inside the case. It further includes a first sensor extending from the flexible case and electrically coupled to the printed circuit board, and one or more indicators in the flexible case, where the indicator(s) are adapted to indicate whether a level of an analyte is within a normal range.
Abstract:
Embodiments of the invention provide amperometric analyte sensors having elements selected to optimize enzymatic activities associated with such sensors including polymers functionalized with enzymatic mediators as well as methods for making and using such sensors. While embodiments of the invention can be used in a variety of contexts, typical embodiments of the invention include glucose or ketone sensors used in the management of diabetes.
Abstract:
The invention provides amperometric analyte sensor systems comprising one or more electrodes designed to monitor in vivo levels of 3-hydroxybutyrate (and optionally glucose as well) in order to facilitate the management of diabetic ketoacidosis. The invention further includes compositions, elements and methods useful with such amperometric analyte sensor systems.
Abstract:
The invention provides amperometric analyte sensor systems comprising one or more electrodes designed to monitor in vivo levels of 3-hydroxybutyrate (and optionally glucose as well) in order to facilitate the management of diabetic ketoacidosis. The invention further includes compositions, elements and methods useful with such amperometric analyte sensor systems.
Abstract:
A medicine delivery and tracking system includes a medicine injection pen and a delivery port. The pen includes a needle through which medicine is dispensed and an electronic unit configured to at least one of log dispensing of medicine from the pen, control dispensing of medicine from the pen, or communicate regarding dispensing of medicine from the pen. Alternatively, the electronic unit may be part of a separate computing device. The delivery port is configured for attachment to a user and to receive the needle of the pen such that medicine dispensed from the pen is dispensed into the delivery port and through the delivery port to the user. The delivery port includes a detector mechanism configured to detect a presence of the pen and, in response thereto, to communicate a signal to the electronic unit for use in the at least one of logging, controlling, or communicating.
Abstract:
Embodiments of the invention provide amperometric analyte sensors having optimized elements such as interference rejection membranes, and associated architectures, as well as methods for making and using such sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
Abstract:
A method is provided for initializing an analyte sensor, such as a glucose sensor. Where a sensor has been disconnected and reconnected, a disconnection time is determined and a sensor initialization protocol is selected based upon the disconnection time. The sensor initialization protocol may include applying a first series of voltage pulses to the sensor. A method for detecting hydration of a sensor is also provided.
Abstract:
Embodiments of the invention provide compositions useful in implantable devices such as analyte sensors as well as methods for making and using such compositions and devices. In typical embodiments of the invention, the device is a glucose sensor comprising a polymeric composition disposed on a flexible assembly within the sensor that includes amounts of one or more immunosuppressant agents designed to provide such sensors with improved material properties such as enhanced biocompatibility.
Abstract:
Embodiments of the invention provide compositions useful in implantable devices such as analyte sensors as well as methods for making and using such compositions and devices. In typical embodiments of the invention, the device is a glucose sensor comprising a polymeric composition disposed on a flexible assembly within the sensor that includes amounts of one or more immunosuppressant agents designed to provide such sensors with improved material properties such as enhanced biocompatibility.