Abstract:
A semiconductor die assembly having high efficiency thermal paths. In one embodiment, the semiconductor die assembly comprises a package support substrate, a first semiconductor die having a peripheral region and a stacking region, and a second semiconductor die attached to the stacking region of the first die such that the peripheral region is lateral of the second die. The assembly further includes a thermal transfer unit having a base attached to the peripheral region of the first die, a cover attached to the base by an adhesive, and a cavity defined by at least cover, wherein the second die is within the cavity. The assembly also includes an underfill in the cavity, wherein a fillet portion of the underfill extends a distance up along a portion of the footing and upward along at least a portion of the base.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
Semiconductor die assemblies and methods of forming the same are described herein. As an example, a semiconductor die assembly may include a thermally conductive casing, a first face of a logic die coupled to the thermally conductive casing to form a thermal path that transfers heat away from the logic die to the thermally conductive casing, a substrate coupled to a second face of the logic die, and a die embedded at least partially in a cavity of the substrate.
Abstract:
Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
Abstract:
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
Abstract:
Stacked semiconductor die assemblies having memory dies stacked between partitioned logic dies and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a first logic die, a second logic die, and a thermally conductive casing defining an enclosure. The stack of memory dies can be disposed within the enclosure and between the first and second logic dies.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.