Abstract:
A lead frame is disclosed. In an embodiment, the lead frame includes a frame having a plurality of lead frame sections, wherein the lead frame sections are connected to the frame, wherein the frame has at least two longitudinal sides and at least two transverse sides, wherein at least in one longitudinal side includes an imprint, and wherein the imprint bolsters stability of the longitudinal side against sagging.
Abstract:
A method can be used for producing an optoelectronic device. A first leadframe section with a component is provided. The component is designed to emit electromagnetic radiation on an emission side. The emission side faces away from the carrier. A second leadframe section is provided. In a first method step the component and the two leadframe sections are encapsulated with a first potting material in such a way that the component and the leadframe sections are embedded into a potting body, but wherein at least part of the emission area of the component remains free of the first potting material and a cutout is formed in the potting body at least above the emission area of the component. In a second method step a second potting material is molded into the cutout of the potting body, such that the emission side of the component is covered with the second potting material.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip including first and second electrical contacts, a first leadframe section including a first chip contact pad and a first soldering contact pad situated opposite the first chip contact pad, and a second leadframe section including a second chip contact pad and a second soldering contact pad situated opposite the second chip contact pad, wherein the first electrical contact electrically conductively connects to the first chip contact pad and the second electrical contact electrically conductively connects to the second chip contact pad, the first and second leadframe sections are embedded into a housing such that at least parts of the first and second soldering contact pads are accessible at an underside, and a solder stop element is arranged at the underside of the housing, the solder stop element extending between the first soldering contact pad and the second soldering contact pad.
Abstract:
In at least one embodiment of the method, the method is used to produce optoelectronic semiconductor components. A lead frame assemblage includes a plurality of lead frames. The lead frames each includes at least two lead frame parts and the lead frames in the lead frame assemblage are electrically connected to one another by connecting webs. The lead frame assemblage is fitted on an intermediate carrier. At least a portion of the connecting webs is removed and/or interrupted. Additional electrical connecting elements are fitted between adjacent lead frames and/or lead frame parts. A potting body mechanically connects the lead frame parts of the individual lead frames to one another. The resulting structure is singulated to form the semiconductor components.
Abstract:
A housing for an optical component is provided in various embodiments. The housing has a leadframe section and a mold compound. The leadframe section is formed from an electrically conductive material and has a first side and a second side facing away from the first side. On the first side, the leadframe section has at least one first receiving region for receiving the optical component and/or at least one contact region for electrically contacting the optical component. The leadframe section has at least one trench which is formed in the leadframe section on the first side thereof alongside the receiving region and/or the contact region. The leadframe section is embedded in the mold compound. The mold compound has at least one receiving recess in which the first receiving region and/or the contact region and the trench are arranged.
Abstract:
A housing includes a lead frame formed from electrically conductive material having first and second sides, a contact section contacting an electronic component at the first side, and at least one receiving section arranging the electronic component at the first side, wherein the contact and receiving sections are separated and the contact section is formed thinner than the receiving section in a direction perpendicular, a molding material having an opening, the receiving and contact regions exposed in the opening, and into which the leadframe is embedded such that part of the molding material is formed between the contact and receiving sections and the second side is covered by the molding material in the contact section, and the second side is free of molding material in the receiving section, wherein the molding material at the second side has at least one opening filled with the electrically insulating material.
Abstract:
A method can be used for producing an optoelectronic device. A first leadframe section with a component is provide. The component is designed to emit electromagnetic radiation on an emission side. The emission side faces away from the carrier. A second leadframe section is provided. In a first method step the component and the two leadframe sections are encapsulated with a first potting material in such a way that the component and the leadframe sections are embedded into a potting body, but wherein at least part of the emission area of the component remains free of the first potting material and a cutout is formed in the potting body at least above the emission area of the component. In a second method step a second potting material is molded into the cutout of the potting body, such that the emission side of the component is covered with the second potting material.
Abstract:
An electrical component includes a closed lead frame with a passage opening at least one electrical component arranged within the passage opening, the electrical component including a first contact pad on one side of the electrical component and a second contact pad on a second side of the electric component, wherein the second side faces the first side and the second contact pad is electrically coupled to the lead frame; and an encapsulation which mechanically couples the electrical component to the lead frame, wherein the lead frame includes a recess on one side, the recess extending from an edge of the lead frame to the passage opening and connecting at least one electrical connecting element from the edge of the lead frame to the component arranged in the passage opening.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip including first and second electrical contacts, a first leadframe section including a first chip contact pad and a first soldering contact pad situated opposite the first chip contact pad, and a second leadframe section including a second chip contact pad and a second soldering contact pad situated opposite the second chip contact pad, wherein the first electrical contact electrically conductively connects to the first chip contact pad and the second electrical contact electrically conductively connects to the second chip contact pad, the first and second leadframe sections are embedded into a housing such that at least parts of the first and second soldering contact pads are accessible at an underside, and a solder stop element is arranged at the underside of the housing, the solder stop element extending between the first soldering contact pad and the second soldering contact pad.
Abstract:
A method of producing an optoelectronic component includes providing a carrier; arranging a structured reflector above a top side of the carrier; arranging an optoelectronic semiconductor chip including a top side and an underside opposite the top side in an opening of the reflector, wherein the underside of the optoelectronic semiconductor chip faces the top side of the carrier; arranging an embedding material above the top side of the carrier, wherein the optoelectronic semiconductor chip is at least partly embedded into the embedding material, as a result of which a composite body including the optoelectronic semiconductor chip, the reflector and the embedding material is formed; and detaching the composite body from the carrier.