Abstract:
Light emitting apparatus including: substrate; LED chips on substrate; sealing member sealing LED chips; buffer layer on substrate; and dam material on the top surface of buffer layer, for holding back sealing member, wherein the adhesive strength of buffer layer to substrate and the adhesive strength of dam material to buffer layer are higher than the adhesive strength of dam material to substrate.
Abstract:
A light-emitting apparatus includes: a substrate; a plurality of LED chips disposed on the substrate and including a plurality of blue LED chips which emit blue light and a plurality of red LED chips which emit red light; and a sealing member that contains a yellow phosphor and seals the plurality of LED chips together. The plurality of LED chips include: a first LED chip group made up of the blue LED chips; a second LED chip group made up of the red LED chips and disposed around the first LED chip group in an annular shape centered on an optical axis; and a third LED chip group made up of the blue LED chips and disposed around the second LED chip group in an annular shape centered on the optical axis.
Abstract:
A light emitting diode (LED) module including: a substrate; a resist including a plurality of layers above the substrate; and an LED element mounted above the substrate. A content percentage of at least one of a phenyl group, an ester bond, and a carbon double bond in a second layer that is an uppermost layer of the plurality of layers is lower than a content percentage of the at least one of the phenyl group, the ester bond, and the carbon double bond in a first layer that is an underlying layer of the plurality of layers, the underlying layer being located below the uppermost layer.
Abstract:
A light-emitting device includes a substrate and a plurality of light-emitting elements disposed above the substrate. In the plurality of light-emitting elements, a first light-emitting element and a second light-emitting element different in a rate of decrease in light output along with a temperature increase are included. The plurality of light-emitting elements include: a first serial element group including some light-emitting elements connected in series among the plurality of light-emitting elements; and a second serial element group connected in parallel with the first serial element group and including some light-emitting elements connected in series among the plurality of light-emitting elements. A ratio between a total number of first light-emitting elements and a total number of second light-emitting elements is different between the first serial element group and the second serial element group.
Abstract:
A light emitting device includes: a substrate; a plurality of light emitting elements mounted in a light emitting area of the substrate, and an intermediate line for electrically connecting a plurality of light emitting elements in parallel or series selectively, the intermediate line being disposed in the light emitting area.
Abstract:
A lighting apparatus includes a substrate, a light-emitting element, and a sealing member. The light-emitting element emits light in a first wavelength range. The sealing member contains a material that converts the light in the first wavelength range to light in a second wavelength range different from the first wavelength range. The sealing member has a curved convex contour in at least one cross section that passes through the center of the light-emitting element and is perpendicular to a principal surface of the substrate. A curved line indicating a change in output angle that occurs upon a change in observation angle is approximated by a quadratic or trigonometric function that passes through the origin.
Abstract:
A light emitting diode (LED) module which includes: a substrate; a resist including a plurality of layers above the substrate; and an LED element mounted above the substrate. The plurality of layers includes a second layer that is an uppermost layer and a first layer that is an underlying layer. The second layer that is the uppermost layer includes fluorine as a component.
Abstract:
A method of manufacturing a light-emitting apparatus includes mounting a first light-emitting element and a second light-emitting element on a substrate. A sealing layer is formed above the first light-emitting element and the second light-emitting element for sealing the first light-emitting element and the second light-emitting element. A first phosphor layer is applied above a first portion of the sealing layer, in which the first phosphor layer includes at least one first phosphor. A second phosphor layer is applied above a second portion of the sealing layer, in which the second phosphor layer includes at least one second phosphor.
Abstract:
Each of a plurality of semiconductor light-emitting element has, on an upper surface thereof that has a quadrilateral shape, a pair of connecting portions having different polarities from each other. The pair of connecting portions are aligned on a diagonal of the quadrilateral shape. The diagonal intersects a row direction along which the semiconductor light-emitting elements within a row are arranged. Connecting portions having identical polarity are positioned on an imaginary line parallel to the row direction. Metal wires intersect two sides extending from a corner, on the diagonal, of the upper surface of each of the semiconductor light-emitting elements when viewed from a direction perpendicular to a mounting surface of a substrate for mounting the semiconductor light-emitting elements.