Abstract:
The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces. Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). Slippery liquid-infused porous surfaces outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (
Abstract:
The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces. Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). Slippery liquid-infused porous surfaces outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (
Abstract:
In one aspect, a liquid-based encapsulation system includes an electronic material having a plurality of exposed surfaces; and an encapsulating liquid disposed over an entirety of the exposed surfaces of the electronic material to prevent diffusion of water past the encapsulating liquid and to protect the electronic material from water. In one aspect, a method of making a liquid-based encapsulation system includes providing an electronic material having a plurality of exposed surfaces; and encapsulating the electronic material with an encapsulating liquid over an entirety of the exposed surfaces of the electronic material to prevent diffusion of water past the encapsulating liquid and to protect the electronic material from water.
Abstract:
The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces (SLIPS). Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). SLIPS outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (
Abstract:
A body having a lubricant reservoir is described, comprising: a porous polymeric body; and a lubricating liquid, said lubricating liquid occupying the pores to provide a lubricated porous surface having a lubricant reservoir and a lubricant overlayer over the polymer surface. Also described herein is a system for use in the formation of a low-adhesion and low-friction surface includes a flowable precursor composition comprising a prepolymer and a curing agent, said composition capable of application as a coating over a large surface area; a lubricating liquid that is capable of forming a coating with the hardened precursor composition, wherein the lubricating liquid and hardened polymer together form a coating of lubricating liquid stabilized on and in the hardened polymer; and instructions for applying the precursor composition onto a surface for the purpose of obtaining a low-adhesion and low-friction surface.
Abstract:
A chemo-mechano-chemical (C1-M-C2) system includes a base supporting an actuatable structure, said structure comprising a functionalized portion and being embedded in an environmentally responsive gel capable of volume change in response to an environmental stimulus; a first fluid layer disposed over the base and in contact with the actuatable structure, said first fluid layer comprising the environmentally responsive gel; and a second fluid layer in contact with the actuatable structure, wherein the layers are positioned such that the functionalized portion is in contact with the second layer in a first relaxed state and in contact with the first layer in a second actuated state and wherein the functionalized portion interacts with at least one of the layers to provide a chemical or physical response.