Abstract:
A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
Abstract:
A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
Abstract:
Disclosed embodiments relate to a system that changes transmitter and/or receiver settings to deal with reliability issues caused by a predetermined event, such as a change in a power state or a clock start event. One embodiment uses a first setting while operating a transmitter during a normal operating mode, and a second setting while operating the transmitter during a transient period following the predetermined event. A second embodiment uses similar first and second settings in a receiver, or in both a transmitter and a receiver employed on one side of a bidirectional link. The first and second settings can be associated with different swing voltages, edge rates, equalizations and/or impedances.
Abstract:
An IC die transmits command signals, address signals and data signals to a flash memory device at respective times via a time-multiplexed external signaling line, the data signals representing data to be stored within an array of non-volatile storage elements of the flash memory device. The IC die additionally transmits a control signal to the flash memory device via one or more external control signal lines, the control signal directing the flash memory device to switchably couple an on-die termination element to the time-multiplexed signaling line.
Abstract:
In a non-volatile memory device having an array of non-volatile storage elements, command, address and data signals are received at respective times via a time-multiplexed external signaling line, the data signals representing data to be stored within the array of non-volatile storage elements. A control signal is received via a signaling path external to the non-volatile memory device, and an on-die termination element is switchably coupled to the time-multiplexed signaling line at least in part in response to a transition of the control signal from a first logic state to a second logic state.
Abstract:
An integrated circuit device transmits to a dynamic random access memory (DRAM) one or more commands that specify programming of a digital control value within the DRAM, the digital control value indicating a termination impedance that the DRAM is to couple to a data interface of the DRAM in response to receiving a write command and during reception of write data corresponding to the write command, and that the DRAM is to decouple from the data interface after reception of the write data corresponding to the write command. Thereafter, the integrated circuit device transmits to the DRAM a write command indicating that write data is to be sampled by a data interface of the DRAM during a first time interval and that cause the DRAM to couple the termination impedance to the data interface during the first time interval and decouple the termination impedance from the data interface after the first time interval.
Abstract:
A memory controller is disclosed. The memory controller is configured to be connected to one or more memory devices via an address and control (RQ) bus. Each of the memory devices have on-die termination (ODT) circuitry connected to a subset of signal lines of the RQ bus, and the memory controller is operable to selectively disable the ODT circuitry in at least one memory device of the one or more memory devices.
Abstract:
In an integrated circuit component having a command interface to receive commands, a data interface to receive write data during a write-data reception interval, and first and second registers, control circuitry within the integrated circuit component responds to one or more of the commands by storing within the first register and the second register, respectively, a first control value that specifies a first termination to be applied to the data interface during the write-data reception interval, and a second control value that specifies a second termination to be applied to the data interface after the write-data reception interval transpires.
Abstract:
A structure for delivering power is described. In some embodiments, the structure can include conductors disposed on two or more layers. Specifically, the structure can include a first set of interdigitated conductors disposed on a first layer and oriented substantially along an expected direction of current flow. At least one conductor in the first set of interdigitated conductors may be maintained at a first voltage, and at least one conductor in the first set of interdigitated conductors may be maintained at a second voltage, wherein the second voltage is different from the first voltage. The structure may further include a conducting structure disposed on a second layer, wherein the second layer is different from the first layer, and wherein at least one conductor in the conducting structure is maintained at the first voltage.
Abstract:
A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A memory controller sends register values, for storage in a plurality of registers of a respective memory device. The register values include register values that represent one or more impedance values of on-die termination (ODT) impedances to apply to the respective inputs of the respective memory device that receive the CA signals, and one or more register values to selectively enable application of a chip select ODT impedance to the chip select input of the respective memory device.