Abstract:
The semiconductor device according to the present invention includes a semiconductor substrate, a first insulating layer laminated on the semiconductor substrate, a first metal wiring pattern embedded in a wire-forming region of the first insulating layer, a second insulating layer laminated on the first insulating layer, a second metal wiring pattern embedded in a wire-forming region of the second insulating layer and first dummy metal patterns embedded each in a wire-opposed region opposing to the wire-forming region of the second insulating layer and in a non-wire-opposed region opposing to a non-wire-forming region other than the wire-forming region of the second insulating layer, the wire-opposed region and the non-wire-opposed region each in a non-wire-forming region other than the wire-forming region of the first insulating layer.
Abstract:
The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
Abstract:
A semiconductor device includes: a conductive portion; and a semiconductor element mounted on the conductive portion, wherein the conductive portion is made of a plating layer, wherein the conductive portion includes a mounting portion having a mounting surface on which the semiconductor element is mounted, and a terminal portion extending to an opposite side of the semiconductor element with respect to the mounting portion, wherein the mounting portion extends in a first direction along the mounting surface more than the terminal portion, and wherein the mounting portion and the terminal portion are integrally formed.
Abstract:
The present disclosure relates to a semiconductor device and a method manufacturing thereof. The object of the present disclosure is to simplify manufacturing steps of a semiconductor device. A semiconductor device of the present disclosure includes an organic film electrically insulative and penetrated by a through hole in a thickness direction, a conductive layer formed on the organic film and made of a copper (Cu)-based and titanium (Ti)-free alloy, a Cu wiring layer formed on the conductive layer, a semiconductor element mounted on the Cu wiring layer, a sealing resin sealing the semiconductor element, and an external terminal connected to the conductive layer. The conductive layer includes the exposed conductive portion exposed from the organic film by entering the through hole. The external terminal is in contact with the exposed conductive portion.
Abstract:
The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
Abstract:
The semiconductor device according to the present invention includes a semiconductor substrate, a first insulating layer laminated on the semiconductor substrate, a first metal wiring pattern embedded in a wire-forming region of the first insulating layer, a second insulating layer laminated on the first insulating layer, a second metal wiring pattern embedded in a wire-forming region of the second insulating layer and first dummy metal patterns embedded each in a wire-opposed region opposing to the wire-forming region of the second insulating layer and in a non-wire-opposed region opposing to a non-wire-forming region other than the wire-forming region of the second insulating layer, the wire-opposed region and the non-wire-opposed region each in a non-wire-forming region other than the wire-forming region of the first insulating layer.
Abstract:
The present invention provides an electronic device that is able to achieve an improvement in yield or an electronic device that is able to prevent a sealing resin from exfoliating from a sub-electrode. The electronic device is provided with an electronic element and a wire bonded to the electronic element. The electronic element includes a bonding pad to which the wire is bonded. The bonding pad includes a Pd layer that directly contacts the wire.
Abstract:
A semiconductor device includes a first etching stopper film and a second etching stopper film that are formed to be spaced apart from one another on a first inter-layer insulating film; a metal thin film resistor formed to extend over the first and second etching stopper films; a second inter-layer insulating film formed on the first inter-layer insulating film to cover the first and second etching stopper films and the metal thin film resistor; a first contact hole formed in the second inter-layer insulating film to extend from a surface of the second inter-layer insulating film onto the first etching stopper film by penetrating through the metal thin film resistor; and a second contact hole formed in the second inter-layer insulating film to extend from a surface of the second inter-layer insulating film onto the second etching stopper film by penetrating through the metal thin film resistor.
Abstract:
The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
Abstract:
The semiconductor device of the present invention includes an insulating layer, a copper wiring for wire connection formed on the insulating layer, a shock absorbing layer formed on an upper surface of the copper wiring, the shock absorbing layer being made of a metallic material with a hardness higher than copper, a bonding layer formed on the shock absorbing layer, the bonding layer having a connection surface for a wire, and a side protecting layer covering a side surface of the copper wiring, wherein the side protecting layer has a thickness thinner than a distance from the upper surface of the copper wiring to the connection surface of the bonding layer.