Abstract:
A level-shift circuit that operates stably is provided. The level-shift circuit has a function of boosting a first signal having an amplitude voltage between a first voltage and a second voltage to a second signal having an amplitude voltage between a third voltage and the second voltage. The level-shift circuit includes first to eighth transistors. Gates of the third and seventh transistors are electrically connected to a wiring for transmitting a third signal for controlling the amounts of current flowing into one of a source and a drain of the first transistor, one of a source and a drain of the second transistor, one of a source and a drain of the fifth transistor, and one of a source and a drain of the sixth transistor.
Abstract:
To provide a semiconductor device having a novel structure. To provide a semiconductor device excellent in reducing power consumption. A memory cell including an SRAM capable of backing up data to the nonvolatile memory and a peripheral circuit of the memory cell are configured to offer different power gating states. In a first period, which is extremely short, the bit line is brought into an electrically floating state by turning off the switch. In a second period, which is longer than the first period, power gating is performed on the memory cell. In a third period, which is longer than the second period, power gating is performed on the memory cell and the peripheral circuits.
Abstract:
A logic circuit that can retain a state even without power supply is provided. The logic circuit includes a first circuit, a pair of retention circuits, and a second circuit. The pair of retention circuits includes two switches electrically connected to each other in series and a capacitor electrically connected to a connection portion of the two switches. Each of the two switches is formed using an oxide semiconductor transistor. The first circuit has a function of generating complementary data from a piece of input data. The pair of retention circuits retains the complementary data. The second circuit has a function of amplifying the complementary data retained in the pair of retention circuits.
Abstract:
A memory device includes a first memory circuit including a silicon transistor, a selection circuit including a silicon transistor, and a second memory circuit including oxide semiconductor transistors and a storage capacitor, in which one terminal of the storage capacitor is connected to a portion where two oxide semiconductor transistors are connected in series, an output of the second memory circuit is connected to a second input terminal of the selection circuit, and an input of the second memory circuit is connected to a first input terminal of the selection circuit or an output terminal of the first memory circuit.
Abstract:
A retention circuit provided in a logic circuit enables power gating. The retention circuit includes a first terminal, a node, a capacitor, and first to third transistors. The first transistor controls electrical connection between the first terminal and an input terminal of the logic circuit. The second transistor controls electrical connection between an output terminal of the logic circuit and the node. The third transistor controls electrical connection between the node and the input terminal of the logic circuit. A gate of the first transistor is electrically connected to a gate of the second transistor. In a data retention period, the node becomes electrically floating. The voltage of the node is held by the capacitor.
Abstract:
A retention circuit provided in a logic circuit enables power gating. The retention circuit includes a first terminal, a node, a capacitor, and first to third transistors. The first transistor controls electrical connection between the first terminal and an input terminal of the logic circuit. The second transistor controls electrical connection between an output terminal of the logic circuit and the node. The third transistor controls electrical connection between the node and the input terminal of the logic circuit. A gate of the first transistor is electrically connected to a gate of the second transistor. In a data retention period, the node becomes electrically floating. The voltage of the node is held by the capacitor.
Abstract:
A retention circuit provided in a logic circuit enables power gating. The retention circuit includes a first terminal, a node, a capacitor, and first to third transistors. The first transistor controls electrical connection between the first terminal and an input terminal of the logic circuit. The second transistor controls electrical connection between an output terminal of the logic circuit and the node. The third transistor controls electrical connection between the node and the input terminal of the logic circuit. A gate of the first transistor is electrically connected to a gate of the second transistor. In a data retention period, the node becomes electrically floating. The voltage of the node is held by the capacitor.
Abstract:
A semiconductor device with low power consumption or a semiconductor device with a reduced area is provided. The semiconductor device includes a cell array including a first memory cell and a second memory cell; and a sense amplifier circuit including a first sense amplifier and a second sense amplifier. The cell array is over the sense amplifier circuit. The first sense amplifier is electrically connected to the first memory cell through a first wiring BL. The second sense amplifier is electrically connected to the second memory cell through a second wiring BL. The first sense amplifier and the second sense amplifier are electrically connected to a wiring GBL. The sense amplifier circuit is configured to select one of a potential of the first wiring BL and a potential of the second wiring BL and output the selected potential to the wiring GBL.
Abstract:
To provide a semiconductor device including a volatile memory which achieves high speed operation and lower power consumption. For example, the semiconductor device includes an SRAM provided with first and second data holding portions and a non-volatile memory provided with third and fourth second data holding portions. The first data holding portion is electrically connected to the fourth data holding portion through a transistor. The second data holding portion is electrically connected to the third data holding portion through a transistor. While the SRAM holds data, the transistor is on so that both the SRAM and the non-volatile memory hold the data. Then, the transistor is turned off before supply of power is stopped, so that the data becomes non-volatile.
Abstract:
A memory device includes a first memory circuit including a silicon transistor, a selection circuit including a silicon transistor, and a second memory circuit including oxide semiconductor transistors and a storage capacitor, in which one terminal of the storage capacitor is connected to a portion where two oxide semiconductor transistors are connected in series, an output of the second memory circuit is connected to a second input terminal of the selection circuit, and an input of the second memory circuit is connected to a first input terminal of the selection circuit or an output terminal of the first memory circuit.