Abstract:
A light emitting device in which a bonding pad is soldered to a mounting substrate, wherein the bonding pad may be formed in various shapes that can minimize the occurrence of voids during soldering or heat fusion.
Abstract:
Exemplary embodiments of the present invention disclose a light emitting diode including an n-type contact layer doped with silicon, a p-type contact layer, an active region disposed between the n-type contact layer and the p-type contact layer, a superlattice layer disposed between the n-type contact layer and the active region, the superlattice layer including a plurality of layers, an undoped intermediate layer disposed between the superlattice layer and the n-type contact layer, and an electron reinforcing layer disposed between the undoped intermediate layer and the superlattice layer. Only a final layer of the super lattice layer closest to the active region is doped with silicon, and the silicon doping concentration of the final layer is higher than that of the n-type contact layer.
Abstract:
An AC light emitting device includes a first light emitting diode chip and a second light emitting diode chip, each of which has a plurality of light emitting cells on a single substrate. A first long-persistent phosphor is positioned on the first light emitting diode chip to perform wavelength conversion for a portion of light emitted from the first light emitting diode chip, and a second long-persistent phosphor is positioned on the second light emitting diode chip to perform wavelength conversion for a portion of light emitted from the second light emitting diode chip. The afterglow luminescence period of the second long-persistent phosphor is different from that of the first long-persistent phosphor.
Abstract:
A light emitting device in which a bonding pad is soldered to a mounting substrate, wherein the bonding pad may be formed in various shapes that can minimize the occurrence of voids during soldering or heat fusion.
Abstract:
A light emitting device in which a bonding pad is soldered to a mounting substrate, wherein the bonding pad may be formed in various shapes that can minimize the occurrence of voids during soldering or heat fusion.
Abstract:
A light emitting device in which a bonding pad is soldered to a mounting substrate, wherein the bonding pad may be formed in various shapes that can minimize the occurrence of voids during soldering or heat fusion.
Abstract:
Exemplary embodiments of the present invention disclose a light emitting diode including an n-type contact layer doped with silicon, a p-type contact layer, an active region disposed between the n-type contact layer and the p-type contact layer, a superlattice layer disposed between the n-type contact layer and the active region, the superlattice layer including a plurality of layers, an undoped intermediate layer disposed between the superlattice layer and the n-type contact layer, and an electron reinforcing layer disposed between the undoped intermediate layer and the superlattice layer. Only a final layer of the superlattice layer closest to the active region is doped with silicon, and the silicon doping concentration of the final layer is higher than that of the n-type contact layer.
Abstract:
Exemplary embodiments of the present invention relate to a light-emitting device including a single substrate, at least two light-emitting units disposed on the single substrate, each of the at least two light-emitting units including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, a first electrode connected to the first conductivity-type semiconductor layer, and a second electrode connected to the second conductivity-type semiconductor layer, wherein two light-emitting units of the at least two light-emitting units share the first conductivity-type semiconductor layer.
Abstract:
A substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
Abstract:
A light emitting device in which a bonding pad is soldered to a mounting substrate, wherein the bonding pad may be formed in various shapes that can minimize the occurrence of voids during soldering or heat fusion.