Abstract:
Methods form an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
Abstract:
An electronic power component including a normally on high-voltage transistor and a normally off low-voltage transistor. The normally on transistor and the normally off transistor are coupled in cascode configuration and are housed in a single package. The normally off transistor is of the bottom-source type.
Abstract:
An integrated circuit has a circuit part and a trimmable resistor, the resistance whereof may be modified by Joule effect. The trimmable resistor has first and second connection terminals coupled to the circuit part, and an intermediate terminal that divides the trimmable resistor into two portions. The first and the second connection terminals and the intermediate terminal are coupled to respective pads configured to receive electrical quantities designed to cause, in use, a respective trimming current flow in each portion. In this way, a substantially zero voltage drop is maintained between the first and second connection terminals while current is flowing in the resistor to change an electrical characteristic of the resistor, such as resistance or thermal coefficient.
Abstract:
The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
Abstract:
A charge-balance power device includes a semiconductor body having a first conductivity type. A trench gate extends in the semiconductor body from a first surface toward a second surface. A body region has a second conductivity type that is opposite the first conductivity type, and the body region faces the first surface of the semiconductor body and extends on a first side and a second side of the trench gate. Source regions having the first conductivity type extend in the body region and face the first surface of the semiconductor body. A drain terminal extends on the second surface of the semiconductor body. The device further comprises a first and a second columnar region having the second conductivity, which extend in the semiconductor body adjacent to the first and second sides of the trench gate, and the first and second columnar regions are spaced apart from the body region and from the drain terminal.
Abstract:
The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
Abstract:
Methods are directed to forming an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
Abstract:
Methods form an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
Abstract:
An electronic semiconductor device including a semiconductor body having a first structural region and a second structural region, which extends on the first structural region and houses a drain region; a body region, which extends into the second structural region; a source region, which extends into the body region; and a gate electrode, which extends over the semiconductor body for generating a conductive channel between the source region and the drain region. The device includes a first conductive trench extending through, and electrically insulated from, the second structural region on one side of the gate electrode; and a second conductive trench extending through the source region, the body region, and right through the second structural region on an opposite side of the gate electrode, electrically insulated from the second structural region and electrically coupled to the body region and to the source region.
Abstract:
An electronic semiconductor device including a semiconductor body having a first structural region and a second structural region, which extends on the first structural region and houses a drain region; a body region, which extends into the second structural region; a source region, which extends into the body region; and a gate electrode, which extends over the semiconductor body for generating a conductive channel between the source region and the drain region. The device includes a first conductive trench extending through, and electrically insulated from, the second structural region on one side of the gate electrode; and a second conductive trench extending through the source region, the body region, and right through the second structural region on an opposite side of the gate electrode, electrically insulated from the second structural region and electrically coupled to the body region and to the source region.