Abstract:
A gate pattern is formed on a first region of a substrate. An epitaxial layer is formed on a second region of the substrate. A recess is formed in the second region of the substrate by etching the epitaxial layer and the substrate underneath. The first region is adjacent to the second region.
Abstract:
A method for fabricating a semiconductor device is provided. The method includes forming a gate pattern which intersects a fin-type active pattern protruding upward from a device isolation layer. A first blocking pattern is formed on a portion of the fin-type active pattern, which does not overlap the gate pattern. Side surfaces of the portion of the fin-type active pattern are exposed. A semiconductor pattern is formed on the exposed side surfaces of the portion of the fin-type active pattern after the forming of the first blocking pattern.
Abstract:
A method of fabricating a semiconductor device is provided. A plurality of first gate electrode structure is formed on a substrate. A recess is formed in the substrate, wherein the recess is formed between two adjacent first gate electrode structures of the plurality of first gate electrode structure. A diffusion prevention layer includes a first material and is formed on the recess of the substrate. A first pre-silicide layer includes a second material different from the first material and is formed on the diffusion prevention layer. A metal layer is formed on the first pre-silicide layer. The first pre-silicide layer and the metal layer are changed to a first silicide layer by performing an annealing process to the substrate. The diffusion prevention layer prevents metal atoms of the metal layer from diffusing to the substrate, and the first silicide layer comprises a monocrystalline layer.
Abstract:
A semiconductor device may include a first active fin, a plurality of second active fins, a first source/drain layer structure, and a second source/drain layer structure. The first active fin may be on a first region of a substrate. The second active fins may be on a second region of the substrate. The first and second gate structures may be on the first and second active fins, respectively. The first source/drain layer structure may be on a portion of the first active fin that is adjacent to the first gate structure. The second source/drain layer structure may commonly contact upper surfaces of the second active fins adjacent to the second gate structure. A top surface of the second source/drain layer structure may be further from the surface of the substrate than a top surface of the first source/drain layer structure is to the surface of the substrate.
Abstract:
A semiconductor device includes a substrate, a first active fin and a second active fin on the substrate, respectively, a plurality of first epitaxial layers on the first active fin and on the second active fin, respectively, a plurality of second epitaxial layers on the plurality of first epitaxial layers, a bridge layer connecting the plurality of second epitaxial layers to each other, and a third epitaxial layer on the bridge layer.
Abstract:
A semiconductor device includes an active fin structure extending in a first direction, the active fin structure including protruding portions divided by a recess, a plurality of gate structures extending in a second direction crossing the first direction and covering the protruding portions of the active fin structure, a first epitaxial pattern in a lower portion of the recess between the gate structures, a second epitaxial pattern on a portion of the first epitaxial pattern, the second epitaxial pattern contacting a sidewall of the recess, and a third epitaxial pattern on the first and second epitaxial patterns, the third epitaxial pattern filling the recess. The first epitaxial pattern includes a first impurity region having a first doping concentration, the second epitaxial pattern includes a second impurity region having a second doping concentration lower than the a first doping concentration, and the third epitaxial pattern includes a third impurity region having a third doping concentration higher than the second doping concentration. The semiconductor device may have good electrical characteristics.
Abstract:
Provided is a method of manufacturing a semiconductor device. The method of manufacturing the semiconductor includes preparing a substrate on which a first region and a second region are defined, forming a first active fin and a second active fin in the first and second regions, respectively, forming a first gate structure and a second gate structure on the substrate in a direction that crosses the first and second active fins, forming a first recess in the first active fin that is adjacent to one side surface of the first gate structure, forming a first epitaxial layer in the first recess, forming a first silicide layer on the first epitaxial layer, forming a second recess in the second active fin that is adjacent to one side surface of the second gate structure, and forming a second silicide layer in the second recess, wherein the second silicide layer includes nickel (Ni) and platinum (Pt).
Abstract:
A semiconductor device is provided. At least two active fins protrude from a substrate. A gate pattern crosses the at least two active fins, covering part of each active fin. A seed layer is disposed on other part of the each active fin. The other part of the each active fin is not covered with the gate pattern. An epitaxial layer is disposed on the seed layer.
Abstract:
A method for fabricating a semiconductor device includes forming a plurality of gate patterns including a top portion and a bottom portion on a substrate, forming a sacrificial layer contacting the bottom portions of the gate patterns, forming a first spacer on lateral surfaces of the top portions of the gate patterns after forming the sacrificial layer, removing the sacrificial layer after forming the first spacer, and forming a plurality of first recesses on lateral surfaces of the gate patterns after removing the sacrificial layer.
Abstract:
In a method of forming an ohmic layer of a DRAM device, the metal silicide layer between the storage node contact plug and the lower electrode of a capacitor is formed as the ohmic layer by a first heat treatment under a first temperature and an instantaneous second heat treatment under a second temperature higher than the first temperature. Thus, the metal silicide layer has a thermo-stable crystal structure and little or no agglomeration occurs on the metal silicide layer in the high temperature process. Accordingly, the sheet resistance of the ohmic layer may not increase in spite of the subsequent high temperature process.