Abstract:
An integrated circuit device includes a stack of integrated circuit memory dies having a plurality of through-substrate vias (TSVs) extending therethrough, and a buffer die electrically coupled to the plurality of TSVs. The buffer die includes a test interface circuit, which is configured to: (i) generate a plurality of internal test signals, which are synchronized with a second clock signal having a second frequency, from at least one control code, and from a plurality of external test signals, which are synchronized with a first clock signal having a first frequency less than the second frequency, and (ii) provide the plurality of internal test signals to at least one of the memory dies in said stack during a first test mode. The second frequency may be greater than three (3) times the first frequency.
Abstract:
In a method of operating a memory device, a command and a first address from a memory controller are received. A read code word including a first set of data corresponding to the first address, a second set of data corresponding to a second address and a read parity data is read from a memory cell array of the memory device. Corrected data are generated by operating error checking and correction (ECC) using an ECC circuit based on the read cord word.
Abstract:
A repair circuit includes first and second fuse circuits, a determination circuit and an output circuit. The first fuse circuit includes a first fuse and is configured to generate a first master signal indicating whether the first fuse has been programmed. The second fuse circuit includes second fuses and is configured to generate a first address indicating whether each of the second fuses has been programmed. The determination circuit is configured to generate a detection signal based on the first master signal and the first address. The detection signal indicates whether a negative program operation has been performed on the second fuse circuit. The output circuit is configured to generate a second master signal based on the first master signal and the detection signal and generate a repair address corresponding to a defective input address based on the first address and the detection signal.
Abstract:
An integrated circuit device includes a stack of integrated circuit memory dies having a plurality of through-substrate vias (TSVs) extending therethrough, and a buffer die electrically coupled to the plurality of TSVs. The buffer die includes a test interface circuit, which is configured to: (i) generate a plurality of internal test signals, which are synchronized with a second clock signal having a second frequency, from at least one control code, and from a plurality of external test signals, which are synchronized with a first clock signal having a first frequency less than the second frequency, and (ii) provide the plurality of internal test signals to at least one of the memory dies in said stack during a first test mode. The second frequency may be greater than three (3) times the first frequency.
Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
Abstract:
Provided are a method and an apparatus for repairing a memory cell in a memory test system. A test device detects a fail address by testing a memory device according to a test command, and temporarily stores the fail address in a fail address memory (FAM). The fail address is transmitted to the memory device according to a fail address transmission mode, is temporarily stored in a temporary fail address storage of the memory device, and is then stored in an anti-fuse array, which is a non-volatile storage device. To secure the reliability of data, stored data can be read to verify the data and a verification result can be transmitted in series or in parallel to the test device.
Abstract:
Provided are a method and an apparatus for repairing a memory cell in a memory test system. A test device detects a fail address by testing a memory device according to a test command, and temporarily stores the fail address in a fail address memory (FAM). The fail address is transmitted to the memory device according to a fail address transmission mode, is temporarily stored in a temporary fail address storage of the memory device, and is then stored in an anti-fuse array, which is a non-volatile storage device. To secure the reliability of data, stored data can be read to verify the data and a verification result can be transmitted in series or in parallel to the test device.