摘要:
A memory device includes a stack of material layers with a plurality of NAND strings extending through the stack, and a trench through the stack with a pair of sidewalls defining a width of the trench that is substantially constant or decreases from the top of the trench to a first depth and increases between a first depth and a second depth that is closer to the bottom of the trench than the first depth and the trench has an insulating material covering at least the trench sidewalls. Further embodiments include a memory device including a stack of material layers and an active memory cell region defined between a pair of trenches, and within the active region the stack comprises alternating layers of a first material and a second material, and outside of the active region the stack comprises alternating layers of the first material and a third material.
摘要:
A first blocking dielectric layer is formed in a memory opening through a stack of an alternating plurality of material layers and insulator layers. A spacer with a bottom opening is formed over the first blocking dielectric layer by deposition of a conformal material layer and an anisotropic etch. A horizontal portion of the first blocking dielectric layer at a bottom of the memory opening can be etched by an isotropic etch process that minimizes overetch into the substrate. An optional additional blocking dielectric layer, at least one charge storage element, a tunneling dielectric, and a semiconductor channel can be sequentially formed in the memory opening to provide a three-dimensional memory stack.
摘要:
A memory film and a semiconductor channel can be formed within each memory opening that extends through a stack including an alternating plurality of insulator layers and sacrificial material layers. After formation of backside recesses through removal of the sacrificial material layers selective to the insulator layers, a metallic barrier material portion can be formed in each backside recess. A molybdenum-containing portion can be formed in each backside recess. Each backside recess can be filled with a molybdenum-containing portion alone, or can be filled with a combination of a molybdenum-containing portion and a metallic material portion including a material other than molybdenum.
摘要:
A method of making a monolithic three dimensional NAND string includes forming a stack of alternating layers of a first material and a second material, etching the stack to form a front side opening in the stack, selectively forming a plurality of discrete semiconductor, metal or silicide charge storage regions on portions of the second material layers exposed in the front side opening, forming a tunnel dielectric layer and semiconductor channel layer in the front side opening, etching the stack to form a back side opening in the stack, removing at least a portion of the second material layers through the back side opening to form back side recesses between the first material layers, forming a blocking dielectric in the back side recesses through the back side opening, and forming control gates over the blocking dielectric in the back side recesses through the back side opening.
摘要:
A method of making a monolithic three dimensional NAND string which contains a semiconductor channel and a plurality of control gate electrodes, includes selectively forming a plurality of discrete charge storage regions using atomic layer deposition. The plurality of discrete charge storage regions includes at least one of a metal or an electrically conductive metal oxide.
摘要:
A contact via structure can include a ruthenium portion formed by selective deposition of ruthenium on a semiconductor surface at the bottom of a contact trench. The ruthenium-containing portion can reduce contact resistance at the interface with an underlying doped semiconductor region. At least one conductive material portion can be formed in the remaining volume of the contact trench to form a contact via structure. Alternatively or additionally, a contact via structure can include a tensile stress-generating portion and a conductive material portion. In case the contact via structure is formed through an alternating stack of insulating layers and electrically conductive layers that include a compressive stress-generating material, the tensile stress-generating portion can at least partially cancel the compressive stress generated by the electrically conductive layers. The conductive material portion of the contact via structure can include a metallic material or a doped semiconductor material.
摘要:
A monolithic three dimensional NAND string includes a semiconductor channel, at least one end part of the semiconductor channel extending substantially perpendicular to a major surface of a substrate and a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate. The NAND string also includes a memory film located between the semiconductor channel and the plurality of control gate electrodes and a blocking dielectric containing a plurality of clam-shaped portions each having two horizontal portions connected by a vertical portion. The NAND string also includes a plurality of discrete cover silicon oxide segments located between the memory film and each respective clam-shaped portion of the blocking dielectric containing a respective control gate electrode. Each of the plurality of cover silicon oxide segments has curved upper and lower sides and substantially straight vertical sidewalls.
摘要:
A method of making a vertical NAND device includes forming a lower portion of a memory stack over a substrate, forming a lower portion of memory openings in the lower portion of the memory stack, and at least partially filling the lower portion of the memory openings with a sacrificial material. The method also includes forming an upper portion of the memory stack over the lower portion of the memory stack and over the sacrificial material, forming an upper portion of the memory openings in the upper portion of the memory stack to expose the sacrificial material in the lower portion of the memory openings, removing the sacrificial material to connect the lower portion of the memory openings with a respective upper portion of the memory openings to form continuous memory openings, and forming a semiconductor channel in each continuous memory opening.
摘要:
A method of making a monolithic three dimensional NAND string includes forming a stack of alternating layers of a first material and a second material, etching the stack to form a front side opening in the stack, selectively forming a plurality of discrete semiconductor, metal or silicide charge storage regions on portions of the second material layers exposed in the front side opening, forming a tunnel dielectric layer and semiconductor channel layer in the front side opening, etching the stack to form a back side opening in the stack, removing at least a portion of the second material layers through the back side opening to form back side recesses between the first material layers, forming a blocking dielectric in the back side recesses through the back side opening, and forming control gates over the blocking dielectric in the back side recesses through the back side opening.
摘要:
A memory film and a semiconductor channel can be formed within each memory opening that extends through a stack including an alternating plurality of insulator layers and sacrificial material layers. After formation of backside recesses through removal of the sacrificial material layers selective to the insulator layers, a metallic barrier material portion can be formed in each backside recess. A molybdenum-containing portion can be formed in each backside recess. Each backside recess can be filled with a molybdenum-containing portion alone, or can be filled with a combination of a molybdenum-containing portion and a metallic material portion including a material other than molybdenum.