Abstract:
A fabrication method of a packaging substrate includes: providing a metal board having a first surface and a second surface opposite to the first surface, wherein the first surface has a plurality of first openings for defining a first core circuit layer therebetween, the second surface has a plurality of second openings for defining a second core circuit layer therebetween, each of the first and second openings has a wide outer portion and a narrow inner portion, and the inner portion of each of the second openings is in communication with the inner portion of a corresponding one of the first openings; forming a first encapsulant in the first openings; forming a second encapsulant in the second openings; and forming a surface circuit layer on the first encapsulant and the first core circuit layer.
Abstract:
A semiconductor package is provided, which includes: a dielectric layer made of a material used for fabricating built-up layer structures; a conductive trace layer formed on the dielectric layer; a semiconductor chip is mounted on and electrically connected to the conductive trace layer; and an encapsulant formed over the dielectric layer to encapsulate the semiconductor chip and the conductive trace layer. Since a strong bonding is formed between the dielectric layer and the conductive trace layer, the present invention can prevent delamination between the dielectric layer and the conductive trace layer from occurrence, thereby improving reliability and facilitating the package miniaturization by current fabrication methods.
Abstract:
Provided is an electronic package providing a circuit structure having auxiliary circuit layers. Further, an electronic component is disposed on the circuit structure and electrically connected to the auxiliary circuit layers. In addition, an encapsulant covers the electronic component, and the circuit structure is disposed on the package substrate having a plurality of main circuit layers, such that the main circuit layers are electrically connected to the auxiliary circuit layers. As such, a number of layers of the auxiliary circuit layers is used to replace a layer number configuration of the main circuit layers.
Abstract:
An electronic package is provided in which a chip packaging module, an electronic element having a plurality of contacts, and an electronic connector are disposed on a routing structure of a carrier component, so as to communicatively connect with the chip packaging module via the electronic element and the electronic connector, thereby increasing a signal transmission speed.
Abstract:
A packaging substrate is disclosed, which includes: a dielectric layer; a circuit layer embedded in and exposed from a surface of the dielectric layer, wherein the circuit layer has a plurality of conductive pads; and a plurality of conductive bumps formed on the conductive pads and protruding above the surface of the dielectric layer. As such, when an electronic element is disposed on the conductive pads through a plurality of conductive elements, the conductive elements can come into contact with both top and side surfaces of the conductive bumps so as to increase the contact area between the conductive elements and the conductive pads, thereby strengthening the bonding between the conductive elements and the conductive pads and preventing delamination of the conductive elements from the conductive pads.
Abstract:
A semiconductor package is provided, which includes: a dielectric layer made of a material used for fabricating built-up layer structures; a conductive trace layer formed on the dielectric layer; a semiconductor chip is mounted on and electrically connected to the conductive trace layer; and an encapsulant formed over the dielectric layer to encapsulate the semiconductor chip and the conductive trace layer. Since a strong bonding is formed between the dielectric layer and the conductive trace layer, the present invention can prevent delamination between the dielectric layer and the conductive trace layer from occurrence, thereby improving reliability and facilitating the package miniaturization by current fabrication methods.
Abstract:
A fabrication method of a packaging substrate includes: providing a metal board having a first surface and a second surface opposite to the first surface, wherein the first surface has a plurality of first openings for defining a first core circuit layer therebetween, the second surface has a plurality of second openings for defining a second core circuit layer therebetween, each of the first and second openings has a wide outer portion and a narrow inner portion, and the inner portion of each of the second openings is in communication with the inner portion of a corresponding one of the first openings; forming a first encapsulant in the first openings; forming a second encapsulant in the second openings; and forming a surface circuit layer on the first encapsulant and the first core circuit layer.
Abstract:
A fabrication method of a packaging substrate includes: providing a metal board having a first surface and a second surface opposite to the first surface, wherein the first surface has a plurality of first openings for defining a first core circuit layer therebetween, the second surface has a plurality of second openings for defining a second core circuit layer therebetween, each of the first and second openings has a wide outer portion and a narrow inner portion, and the inner portion of each of the second openings is in communication with the inner portion of a corresponding one of the first openings; forming a first encapsulant in the first openings; forming a second encapsulant in the second openings; and forming a surface circuit layer on the first encapsulant and the first core circuit layer.
Abstract:
A fabrication method of a packaging substrate includes: providing a metal board having a first surface and a second surface opposite to the first surface, wherein the first surface has a plurality of first openings for defining a first core circuit layer therebetween, the second surface has a plurality of second openings for defining a second core circuit layer therebetween, each of the first and second openings has a wide outer portion and a narrow inner portion, and the inner portion of each of the second openings is in communication with the inner portion of a corresponding one of the first openings; a first encapsulant in the first openings; a second encapsulant in the second openings; and forming a surface circuit layer on the first encapsulant and the first core circuit layer.
Abstract:
An electronic package is provided in which a chip packaging module, an electronic element having a plurality of contacts, and an electronic connector are disposed on a routing structure of a carrier component, so as to communicatively connect with the chip packaging module via the electronic element and the electronic connector, thereby increasing a signal transmission speed.