摘要:
Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.
摘要:
A lost cost method for fabricating SOI substrates is provided. The method includes forming a stack of p-type doped amorphous Si-containing layers on a semiconductor region of a substrate by utilizing an evaporation deposition process. A solid phase recrystallization step is then performed to convert the amorphous Si-containing layers within the stack into a stack of p-type doped single crystalline Si-containing layers. After recrystallization, the single crystalline Si-containing layers are subjected to anodization and at least an oxidation step to form an SOI substrate. Solar cells and/or other semiconductor devices can be formed on the upper surface of the inventive SOI substrate.
摘要:
Laser ablation can be used to form a trench within at least a blanket layer of a stressor layer that is atop a base substrate. A non-ablated portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can also be used to form a trench within a blanket material stack including at least a plating seed layer. A stressor layer is formed on the non-ablated portions of the material stack and one portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can be further used to form a trench that extends through a blanket stressor layer and into the base substrate itself. The trench has an edge that defines the edge of the material layer region to be spalled.
摘要:
The generation of surface patterns or the replication of surface patterns is achieved in the present disclosure without the need to employ an etching process. Instead, a unique fracture mode referred to as spalling is used in the present disclosure to generate or replicate surface patterns. In the case of surface pattern generation, a surface pattern is provided in a stressor layer and then spalling is performed. In the case of surface pattern replication, a surface pattern is formed within or on a surface of a base substrate, and then a stressor layer is applied. After applying the stressor layer, spalling is performed. Generation or replication of surface patterns utilizing spalling provides a low cost means for generation or replication of surface patterns.
摘要:
A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed.
摘要:
A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed.
摘要:
A solar cell having n-type and p-type interdigitated back contacts (IBCs), which cover the entire back surface of the absorber layer. The spatial separation of the IBCs is in a direction perpendicular to the back surface, thus providing borderless contacts having a zero-footprint separation. As the contacts are on the back, photons incident on the cell's front surface can be absorbed without any shadowing.
摘要:
A solar cell having n-type and p-type interdigitated back contacts (IBCs), which cover the entire back surface of the absorber layer. The spatial separation of the IBCs is in a direction perpendicular to the back surface, thus providing borderless contacts having a zero-footprint separation. As the contacts are on the back, photons incident on the cell's front surface can be absorbed without any shadowing.
摘要:
Methods for removing or reducing the thickness of a material layer remaining at Si-Si interfaces after silicon wafer bonding. The methods include an anneal which is performed at a temperature sufficient to dissolve oxide, yet not melt silicon.
摘要:
A photovoltaic device and method include a substrate layer having a plurality of structures including peaks and troughs formed therein. A continuous photovoltaic stack is conformally formed over the substrate layer and extends over the peaks and troughs. The photovoltaic stack has a thickness of less than one micron and is configured to transduce incident radiation into current flow.