Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
A lithography mask includes a substrate that contains a low thermal expansion material (LTEM). A reflective structure is disposed over a first side of the substrate. An absorber layer is disposed over the reflective structure. The absorber layer contains one or more first overlay marks. A conductive layer is disposed over a second side of the substrate, the second side being opposite the first side. The conductive layer contains portions of one or more second overlay marks. In some embodiments, the lithography mask includes an EUV lithography mask.
Abstract:
An extreme ultraviolet lithography method is disclosed. In an example, the EUVL method includes forming a resist layer on a substrate; performing a first exposure process to image a first pattern of a first sub-region of a first mask to the resist layer; performing a second exposure process to image a second pattern of a second sub-region of the first mask to the resist layer; and performing a third exposure process to image a third pattern of a first sub-region of a second mask to the resist layer. The second and third patterns are identical to the first pattern. The first, second and third exposure processes collectively form a latent image of the first pattern on the resist layer.
Abstract:
The present disclosure relates to a method of forming an extreme ultraviolet (EUV) pellicle having an pellicle film connected to a pellicle frame without a supportive mesh, and an associated apparatus. In some embodiments, the method is performed by forming a cleaving plane within a substrate. A pellicle frame is attached to an upper surface of the substrate, and the substrate is cleaved along the cleaving plane to form a pellicle film attached to the pellicle frame. The method forms the pellicle without using a support structure, which may block EUV radiation and cause substantial non-uniformities in the intensity of EUV radiation incident on an EUV reticle.
Abstract:
A method and apparatus for ultraviolet (UV) and extreme ultraviolet (EUV) lithography patterning is provided. A UV or EUV light beam is generated and directed to the surface of a substrate disposed on a stage and coated with photoresist. A laminar flow of a layer of inert gas is directed across and in close proximity to the substrate surface coated with photoresist during the exposure, i.e. lithography operation. The inert gas is exhausted quickly and includes a short resonance time at the exposure location. The inert gas flow prevents flue gasses and other contaminants produced by outgassing of the photoresist, to precipitate on and contaminate other features of the lithography apparatus.
Abstract:
An out-of-band (OoB) suppression layer is applied on a reflective multiplayer (ML) coating, so as to avoid the OoB reflection and to enhance the optical contrast at 13.5 nm A material having a low reflectivity at wavelength of 193-257 nm, for example, silicon carbide (SiC), is used as the OoB suppression layer. A method of fabricating an EUV mask having the OoB suppression layer and a method of inspecting an EUV mask having the OoB suppression are also provided.
Abstract:
A method of performing a lithography process includes receiving a lithography mask and performing overlay measurement. The lithography mask includes a substrate that contains a low thermal expansion material (LTEM); a reflective structure over a first side of the substrate; an absorber layer over the reflective structure and containing one or more first overlay marks; and a conductive layer over a second side of the substrate and containing one or more second overlay marks. The second side is opposite the first side. The overlay measurement includes using the one or more first overlay marks in an extreme ultraviolet (EUV) lithography process or using the one or more second overlay marks in a non-EUV lithography process.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.