Abstract:
A method includes bonding a first semiconductor die to a semiconductor substrate; bonding a second semiconductor die to the semiconductor substrate, wherein the second semiconductor die is laterally separated from the first semiconductor die by a gap; filling the gap between the first semiconductor die and the second semiconductor die with a metal material to form a thermally conductive region; and depositing a first dielectric layer over the first semiconductor die, the second semiconductor die, and the thermally conductive region.
Abstract:
Methods of fusion bonding semiconductor dies in packaged semiconductor devices and packaged semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor package includes a first die including a semiconductor substrate and a through via extending through the semiconductor substrate; a second die bonded to the first die, the second die including a bond pad, the bond pad being physically and electrically coupled to the through via by metal-to-metal bonds; and an encapsulating material on the first die and laterally encapsulating the second die.
Abstract:
A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
Abstract:
A method of producing a metal gate structure. The method includes forming a gate structure above a semiconductor substrate and performing one or more chemical metal planarization (CMP) processes to planarize the formed gate structure using a CMP tool. An in situ gate etching process is performed in a CMP cleaner of the CMP tool to form a gate recess. A contact etch stop layer (CESL) can then be deposited in the formed gate recess and one or more CMP processes performed to planarize the CESL.
Abstract:
A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
Abstract:
The present disclosure relates to a method of performing a chemical mechanical planarization (CMP) process with a high germanium-to-oxide removal selectivity and a low rate of germanium recess formation. The method is performed by providing a semiconductor substrate having a plurality of germanium compound regions including germanium interspersed between a plurality of oxide regions including an oxide. A slurry is then provided onto the semiconductor substrate. The slurry has an oxidant and an etching inhibitor configured to reduce a removal rate of the germanium relative to the oxide. A CMP process is then performed by bringing a chemical mechanical polishing pad in contact with top surfaces of the plurality of germanium compound regions and the plurality of oxide regions.
Abstract:
The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
Abstract:
The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.