Abstract:
A method is provided. A bottom passivation layer is formed on a dielectric layer over a semiconductor substrate. Then, a first opening is formed in the bottom passivation layer to expose a portion of the dielectric layer. Next, a metal pad is formed in the first opening. Afterwards, a first oxide-based passivation layer is formed over the metal pad. Then, a second oxide-based passivation layer is formed over the first oxide-based passivation layer. The second oxide-based passivation layer has a hardness less than a hardness of the first oxide-based passivation layer.
Abstract:
A method of producing a metal gate structure. The method includes forming a gate structure above a semiconductor substrate and performing one or more chemical metal planarization (CMP) processes to planarize the formed gate structure using a CMP tool. An in situ gate etching process is performed in a CMP cleaner of the CMP tool to form a gate recess. A contact etch stop layer (CESL) can then be deposited in the formed gate recess and one or more CMP processes performed to planarize the CESL.
Abstract:
A wafer polishing apparatus is described herein. The wafer polishing apparatus includes a polish module configured to apply air pressure to a first surface of a wafer while performing a polishing process on a second surface of the wafer. In some implementations, the polish module is further configured to perform a cleaning process and/or a drying process on the second surface of the wafer, such that the same wafer polishing apparatus is configured to perform the polishing process, the cleaning process, and/or the drying process. In some implementations, the polishing module is further configured to air seal edges of the wafer during the polishing process, the cleaning process, and/or the drying process.
Abstract:
The present disclosure provides a semiconductor fabrication apparatus in accordance with one embodiment. The apparatus includes a wafer stage that is operable to secure and rotate a wafer; a polish head configured to polish a backside surface of the wafer; an air bearing module configured to apply an air pressure to a front surface of the wafer; and an edge sealing unit configured to seal edges of the wafer.
Abstract:
A semiconductor die includes a semiconductor substrate, a dielectric layer over the semiconductor substrate, a metal structure in the dielectric layer, a first metal pad over the metal structure, a first oxide-based passivation layer over the first metal pad, a second oxide-based passivation layer over the first oxide-based passivation layer, and a bump electrically connected to the first metal pad. The second oxide-based passivation layer has a hardness less than a hardness of the first oxide-based passivation layer.
Abstract:
A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
Abstract:
A method is provided. A bottom passivation layer is formed on a dielectric layer over a semiconductor substrate. Then, a first opening is formed in the bottom passivation layer to expose a portion of the dielectric layer. Next, a metal pad is formed in the first opening. Afterwards, a first oxide-based passivation layer is formed over the metal pad. Then, a second oxide-based passivation layer is formed over the first oxide-based passivation layer. The second oxide-based passivation layer has a hardness less than a hardness of the first oxide-based passivation layer.
Abstract:
A wafer polishing apparatus is described herein. The wafer polishing apparatus includes a polish module configured to apply air pressure to a first surface of a wafer while performing a polishing process on a second surface of the wafer. In some implementations, the polish module is further configured to perform a cleaning process and/or a drying process on the second surface of the wafer, such that the same wafer polishing apparatus is configured to perform the polishing process, the cleaning process, and/or the drying process. In some implementations, the polishing module is further configured to air seal edges of the wafer during the polishing process, the cleaning process, and/or the drying process.
Abstract:
A method includes forming a first gate above a semiconductor substrate, forming a hard mask on the first gate, and forming a contact etch stop layer (CESL) on the hard mask. No hard mask is removed between the step of forming the hard mask and the step of forming the CESL. The method further includes forming an interlayer dielectric (ILD) layer over the CESL, and performing one or more CMP processes to planarize the ILD layer, remove the CESL on the hard mask, and remove at least one portion of the hard mask.
Abstract:
A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.