Abstract:
A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate including a first source/drain region and a second source/drain region. The first and second source/drain regions form a channel region therebetween. The semiconductor structure further includes a select gate and a memory gate spaced between the first and second source/drain regions over the channel region. The select gate extends over the channel region and terminates at a line end having a top surface asymmetric about an axis that extends along a length of the select gate and that bisects a width of the select gate. Even more, the semiconductor structure includes a charge trapping dielectric arranged between neighboring sidewalls of the memory gate and the select gate, and arranged under the memory gate. A method of manufacturing the semiconductor structure is also provided.
Abstract:
The present disclosure relates to a resistive random access memory (RRAM) cell having a bottom electrode that provides for low leakage currents within the RRAM cell without using insulating sidewall spacers, and an associated method of formation. In some embodiments, the RRAM cell has a bottom electrode disposed over a lower metal interconnect layer surrounded by a lower inter-level dielectric (ILD) layer. A bottom dielectric layer is disposed over the lower metal interconnect layer and/or the lower ILD layer. A dielectric data storage layer having a variable resistance is located above the bottom dielectric layer and the bottom electrode, and a top electrode is disposed over the dielectric data storage layer. Placement of the dielectric data storage layer onto the bottom dielectric layer increases a leakage path distance between the bottom and top electrodes, and thereby provides for low leakage current for the RRAM cell.
Abstract:
In some embodiments, the present disclosure relates to a display device that includes a reflector electrode coupled to an interconnect structure. An isolation structure is disposed over the reflector electrode, and a transparent electrode is disposed over the isolation structure. Further, an optical emitter structure is disposed over the transparent electrode. A via structure extends from a top surface of the isolation structure to the reflector electrode and comprises an outer portion that directly overlies the top surface of the isolation structure. A hard mask layer is arranged directly between the top surface of the isolation structure and the outer portion of the via structure.
Abstract:
The present disclosure relates to a processing tool that includes a first wafer-mounting frame and a second wafer-mounting frame. The first wafer-mounting frame is configured to retain a target wafer. The second wafer-mounting frame is configured to retain a masking wafer. The masking wafer includes a mask pattern made up of a number of openings passing through the masking wafer to correspond to a predetermined deposition pattern to be formed on the target wafer. A deposition chamber is configured to receive the first and second wafer-mounting frames, when the first and second wafer-mounting frames are clamped together to retain the target wafer and the masking wafer. The deposition chamber includes a material deposition source configured to deposit material from the material deposition source through the number of openings in the mask pattern to form the material in the predetermined deposition pattern on the target wafer.
Abstract:
A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate including a first source/drain region and a second source/drain region. The first and second source/drain regions form a channel region therebetween. The semiconductor structure further includes a select gate and a memory gate spaced between the first and second source/drain regions over the channel region. The select gate extends over the channel region and terminates at a line end having a top surface asymmetric about an axis that extends along a length of the select gate and that bisects a width of the select gate. Even more, the semiconductor structure includes a charge trapping dielectric arranged between neighboring sidewalls of the memory gate and the select gate, and arranged under the memory gate. A method of manufacturing the semiconductor structure is also provided.
Abstract:
Some embodiments relate to a memory device comprising a charge-trapping layer disposed between a control gate and a select gate. A capping structure is disposed over an upper surface of the control gate, and a composite spacer is disposed on a source-facing sidewall surface of the control gate. The capping structure and the composite spacer prevent damage to the control gate during one more etch processes used for contact formation to the memory device. To further limit or prevent the select gate sidewall etching, some embodiments provide for an additional liner oxide layer disposed along the drain-facing sidewall surface of the select gate. The liner oxide layer is configured as an etch stop layer to prevent etching of the select gate during the one or more etch processes. As a result, the one or more etch processes leave the control gate and select gate substantially intact.
Abstract:
A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate including a first source/drain region and a second source/drain region. The first and second source/drain regions form a channel region therebetween. The semiconductor structure further includes a select gate and a memory gate spaced between the first and second source/drain regions over the channel region. The select gate extends over the channel region and terminates at a line end having a top surface asymmetric about an axis that extends along a length of the select gate and that bisects a width of the select gate. Even more, the semiconductor structure includes a charge trapping dielectric arranged between neighboring sidewalls of the memory gate and the select gate, and arranged under the memory gate. A method of manufacturing the semiconductor structure is also provided.
Abstract:
Some embodiments relate to a memory cell with a charge-trapping layer of nanocrystals, comprising a tunneling oxide layer along a select gate, a control oxide layer formed between a control gate and the tunnel oxide layer, and a plurality of nanocrystals arranged between the tunneling and control oxide layers. An encapsulating layer isolates the nanocrystals from the control oxide layer. Contact formation to the select gate includes a two-step etch. A first etch includes a selectivity between oxide and the encapsulating layer, and etches away the control oxide layer while leaving the encapsulating layer intact. A second etch, which has an opposite selectivity of the first etch, then etches away the encapsulating layer while leaving the tunneling oxide layer intact. As a result, the control oxide layer and nanocrystals are etched away from a surface of the select gate, while leaving the tunneling oxide layer intact for contact isolation.
Abstract:
Some embodiments of the present disclosure relate to a deep trench isolation structure. This deep trench isolation structure is formed on a semiconductor substrate having an upper semiconductor surface. A deep trench, which has a deep trench width as measured between opposing deep trench sidewalls, extends into the semiconductor substrate beneath the upper semiconductor surface. A fill material is formed in the deep trench, and a dielectric liner is disposed on a lower surface and sidewalls of the deep trench to separate the fill material from the semiconductor substrate. A shallow trench region has sidewalls that extend upwardly from the sidewalls of the deep trench to the upper semiconductor surface. The shallow trench region has a shallow trench width that is greater than the deep trench width. A dielectric material fills the shallow trench region and extends over top of the conductive material in the deep trench.
Abstract:
In some methods, a first recess is etched in a selected region of a substrate. A first polymer liner is formed on sidewalls and a bottom surface of the first recess. A portion of the first polymer liner is removed from the bottom surface, and a remaining portion of the first polymer liner is left along the sidewalls. The first recess is deepened to establish a second recess while the remaining portion of the first polymer liner is left along the sidewalls. A first oxide liner is formed along the sidewalls and along sidewalls and a bottom surface of the second recess. A portion of the first oxide liner is removed from a bottom surface of the second recess, while a remaining portion of the first oxide liner is left on the sidewalls of the first recess and the sidewalls of the second recess.