摘要:
An electronic package with two circuitized substrates which sandwich an interposer therebetween, the interposer electrically interconnecting the substrates while including at least one electrical component (e.g., a power module) substantially therein to provide even further operational capabilities for the resulting package.
摘要:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
摘要:
An electronic package with two circuitized substrates which sandwich an interposer therebetween, the interposer electrically interconnecting the substrates while including at least one electrical component (e.g., a power module) substantially therein to provide even further operational capabilities for the resulting package.
摘要:
Printed conductive lines and a method of preparing them using polymer nanocomposites with low resistivity and high current carrying capacity. Plasma treatment selectively removes polymers/organics from nanocomposites. Subsequent selective metal is deposited on top of the exposed metal surface of the printed conductive lines in order to improve current carrying capacity of the conductive printed lines. The printed conductive lines use a conductive ink or printing process and are then cured thermally and/or by a lamination process. Next, the printed conductive lines are treated with the plasma for 5-15 minutes in order to remove organics. E-less copper (Cu) is selectively deposited only at the conducting particle surface of the printed conductive lines. If desired, e-less gold, silver, tin, or tin-lead can be deposited on top of the e-less Cu.
摘要:
An electronic package with two circuitized substrates which sandwich an interposer therebetween, the interposer electrically interconnecting the substrates and also including an opening therein in which is positioned at least one electrical component, such as a semiconductor chip, coupled to the lower or base substrate. A second component may also be mounted on and electrically coupled to the upper surface of the top or cover circuitized substrate. A method of making such a package is also provided.
摘要:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
摘要:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
摘要:
Methods of forming embedded, multilayer capacitors in printed circuit boards wherein copper or other electrically conductive channels are formed on a dielectric substrate. The channels may be preformed using etching or deposition techniques. A photoimageable dielectric is an upper surface of the laminate. Exposing and etching the photoimageable dielectric exposes the space between the copper traces. These spaces are then filled with a capacitor material. Finally, copper is either laminated or deposited atop the structure. This upper copper layer is then etched to provide electrical interconnections to the capacitor elements. Traces may be formed to a height to meet a plane defining the upper surface of the dielectric substrate or thin traces may be formed on the remaining dielectric surface and a secondary copper plating process is utilized to raise the height of the traces.
摘要:
Methods of forming embedded, multilayer capacitors in printed circuit boards wherein copper or other electrically conductive channels are formed on a dielectric substrate. The channels may be preformed using etching or deposition techniques. A photoimageable dielectric is an upper surface of the laminate. Exposing and etching the photoimageable dielectric exposes the space between the copper traces. These spaces are then filled with a capacitor material. Finally, copper is either laminated or deposited atop the structure. This upper copper layer is then etched to provide electrical interconnections to the capacitor elements. Traces may be formed to a height to meet a plane defining the upper surface of the dielectric substrate or thin traces may be formed on the remaining dielectric surface and a secondary copper plating process is utilized to raise the height of the traces.
摘要:
A method of making a circuitized substrate which includes at least one and possibly several capacitors as part thereof. In one embodiment, the substrate is produced by forming a layer of capacitive dielectric material on a dielectric layer and thereafter forming channels with the capacitive material, e.g., using a laser. The channels are then filled with conductive material, e.g., copper, using selected deposition techniques, e.g., sputtering, electro-less plating and electroplating. A second dielectric layer is then formed atop the capacitor and a capacitor “core” results. This “core” may then be combined with other dielectric and conductive layers to form a larger, multilayered PCB or chip carrier. In an alternative approach, the capacitive dielectric material may be photo-imageable, with the channels being formed using conventional exposure and development processing known in the art. In still another embodiment, at least two spaced-apart conductors may be formed within a metal layer deposited on a dielectric layer, these conductors defining a channel there-between. The capacitive dielectric material may then be deposited (e.g., using lamination) within the channels.