Abstract:
A plating method includes holding a substrate, supplying a plating liquid L1, supplying a conductive liquid L2 and applying a voltage. In the holding of the substrate, the substrate is held. In the supplying of the plating liquid L1, the plating liquid L1 is supplied onto the held substrate. In the supplying of the conductive liquid L2, the conductive liquid L2, which is different from the plating liquid L1 supplied on the substrate, is supplied onto the plating liquid L1. In the applying of the voltage, the voltage is applied between the substrate and the conductive liquid L2.
Abstract:
A substrate liquid processing apparatus 1 includes a substrate holding unit 52 configured to hold a substrate W; a processing liquid supply unit 53 configured to supply a processing liquid L1 onto a top surface of the substrate W held by the substrate holding unit 52; and a cover body 6 configured to cover the substrate W. Here, the cover body 6 includes a ceiling unit 61 disposed above the substrate W, a sidewall unit 62 downwardly extended from the ceiling unit 61, and a heating unit 63 provided at the ceiling unit 61 and configured to heat the processing liquid L1 on the substrate W. The sidewall unit 62 of the cover body 6 is placed at an outer periphery side of the substrate W when the processing liquid L1 on the substrate W is heated.
Abstract:
An electrolytic processing jig configured to perform an electrolytic processing on a processing target substrate by using a processing liquid supplied to the processing target substrate includes a base body having a flat plate shape; and a direct electrode provided on a front surface of the base body and configured to be brought into contact with the processing liquid to apply a voltage between the processing target substrate and the direct electrode. An irregularity pattern is formed on a front surface of the electrolytic processing jig at a processing target substrate side.
Abstract:
A substrate processing apparatus can suppress particle generation on a substrate, and can reduce a consumption amount of a processing liquid. A substrate processing apparatus 1 includes a processing chamber 30 having a processing space 31 in which a substrate W is processed; a vaporizing tank 60, configured to store the processing liquid therein, having a vaporization space 61 in which the stored processing liquid is allowed to be vaporized; a decompression driving unit 70 configured to decompress the vaporization space 61; and a control unit 18. The control unit 18 vaporizes the processing liquid into the processing gas by decompressing the vaporization space 61 without through the processing space 31, and then, vaporizes the processing liquid into the processing gas by decompressing the vaporization space 61 through the processing space 31, and supplies an inert gas into the vaporization space 61.
Abstract:
A substrate entire region treatment process of discharging a processing fluid of a temperature different from a surface temperature of a substrate 3 from a first nozzle 24 toward the substrate is performed while moving the first nozzle toward an outer side from an entire region treatment start position P2 located at a central portion to an entire region treatment end position P5 located at a peripheral portion. Then, after moving the first nozzle toward an inner side to a peripheral region treatment start position P6 located at an outer position than the entire region treatment start position P2, a substrate peripheral region treatment process of discharging the processing fluid from the first nozzle toward the substrate is performed while moving the first nozzle toward the outer side from the peripheral region treatment start position P6 to a peripheral region treatment stop position P7 located at a peripheral portion.
Abstract:
A substrate processing apparatus includes one or more substrate processing units 11 to 18 each processing a substrate 3 with a processing fluid; processing fluid supply units 19 and 20 supplying the heated processing fluid to the substrate processing units 11 to 18; and a controller 21 controlling the processing fluid supply units 19 and 20. The processing fluid supply units 19 and 20 include a storage tank 35 storing the processing fluid; a heating heat exchanger 51 heating the processing fluid; and a supply path 52 supplying the processing fluid to the substrate processing units 11 to 18. The supply path 52 includes a bypass path 71 bypassing the heating heat exchanger 51 at an upstream of the substrate processing units 11 to 18. The processing fluid heated by the heating heat exchanger 51 and the processing fluid supplied from the bypass path 71 are mixed to be supplied.
Abstract:
A scratch on a substrate held by a wafer holding unit or adhesion of an impurity to the substrate can be suppressed. A substrate processing apparatus 1 includes a wafer holding unit 22 configured to be rotated and a nozzle 50 configured to supply a coating liquid 50a. The wafer holding unit 22 includes a holding surface 23 and an opening 24. The coating liquid 50a is supplied onto a peripheral portion of the holding surface 23 from the nozzle 50, and then, the coating liquid is dried, so that an annular coating film 25, on which a wafer W is placed, is formed on the holding surface 23.
Abstract:
A substrate entire region treatment process of discharging a processing fluid of a temperature different from a surface temperature of a substrate 3 from a first nozzle 24 toward the substrate is performed while moving the first nozzle toward an outer side from an entire region treatment start position P2 located at a central portion to an entire region treatment end position P5 located at a peripheral portion. Then, after moving the first nozzle toward an inner side to a peripheral region treatment start position P6 located at an outer position than the entire region treatment start position P2, a substrate peripheral region treatment process of discharging the processing fluid from the first nozzle toward the substrate is performed while moving the first nozzle toward the outer side from the peripheral region treatment start position P6 to a peripheral region treatment stop position P7 located at a peripheral portion.
Abstract:
An electrolytic processing jig configured to perform an electrolytic processing on a processing target substrate by using a processing liquid supplied to the processing target substrate includes a base body having a flat plate shape; and a direct electrode provided on a front surface of the base body and configured to be brought into contact with the processing liquid to apply a voltage between the processing target substrate and the direct electrode. An irregularity pattern is formed on a front surface of the electrolytic processing jig at a processing target substrate side.
Abstract:
A substrate processing apparatus includes a liquid processing module, provided with a carry-out/in opening of a substrate, including therein a first liquid processing device and a second liquid processing device; a module-outside transfer device configured to carry the substrate out from and into the liquid processing module; and a module-inside transfer device configured to transfer the substrate between the first liquid processing device and the second liquid processing device. The first liquid processing device is equipped with a first holder configured to hold the substrate. The second liquid processing device is equipped with a second holder configured to hold the substrate. The second liquid processing device is configured to perform a plating processing on the substrate held by the second holder. The first liquid processing device is configured to perform at least a post-cleaning processing performed after the plating processing on the substrate held by the first holder.