System and method for flow cytometry
    11.
    发明申请
    System and method for flow cytometry 有权
    流式细胞术的系统和方法

    公开(公告)号:US20090027666A1

    公开(公告)日:2009-01-29

    申请号:US12152665

    申请日:2008-05-14

    IPC分类号: G01N21/01

    摘要: A flow cytometry system and related method, among other things, are disclosed. In at least one embodiment, the system includes first, second, and intermediate slab formations, the last of which has formed therewithin a microfluidic channel, a lens structure arranged proximate the microfluidic channel, and a light conveying structure arranged proximate to the lens structure. The lens structure is configured to direct a portion of light to proceed between the channel and the conveying structure. The intermediate slab formation is sandwiched between the other two slab formations. In at least another embodiment, the system includes a microfluidic prism arranged proximate to the second end of a light conveying structure. Light emanating from a microfluidic channel is provided to the conveying structure at the first end, conveyed to the second end, and provided to the prism, which outputs a plurality of portions of the light at different frequencies in different directions.

    摘要翻译: 公开了流式细胞术系统及其相关方法。 在至少一个实施例中,系统包括第一,第二和中间板坯结构,其中最后一个在微流体通道中形成,在微流体通道附近布置的透镜结构以及靠近透镜结构布置的光输送结构。 透镜结构构造成引导一部分光在通道和输送结构之间进行。 中间板坯形成夹在其他两个板坯结构之间。 在至少另一个实施例中,系统包括靠近光输送结构的第二端布置的微流体棱镜。 从微流体通道发出的光在第一端被提供给输送结构,输送到第二端,并提供给棱镜,棱镜以不同的方向输出不同频率的多个部分。

    Broadly tunable distributed bragg reflector structure processing
    12.
    发明授权
    Broadly tunable distributed bragg reflector structure processing 失效
    广泛可调的分布式布拉格反射器结构处理

    公开(公告)号:US06806114B1

    公开(公告)日:2004-10-19

    申请号:US10039526

    申请日:2001-11-07

    申请人: Yu-Hwa Lo

    发明人: Yu-Hwa Lo

    IPC分类号: H01L2100

    摘要: A process for creating a broadly tunable Distributed Bragg Reflector (DBR) with a reduced recombination rate. According to the current invention, this may be achieved by creating electron confinement regions and hole confinement regions in the waveguide of the DBR. Preferably, this is achieved by engineering the band gaps of the DBR waveguide and cladding materials. Preferably, the materials selected for use in the DBR may be lattice matched. Alternately, two or more thin electron confinement regions and two or more thin hole confinement regions may be created to take advantage of strain compensation in thinner layers thereby broadening the choices of materials appropriate for use in creating a broadly tunable DBR. Alternately, graded materials and/or graded interfaces may be created according to alternate processes according to the current invention to provide effective electron and/or hole confinement regions in various DBR designs.

    摘要翻译: 用于创建具有降低的重组率的广泛可调谐分布布拉格反射器(DBR)的过程。 根据本发明,这可以通过在DBR的波导中产生电子限制区域和空穴限制区域来实现。 优选地,这通过设计DBR波导和包层材料的带隙来实现。 优选地,选择用于DBR的材料可以是晶格匹配的。 或者,可以创建两个或更多个薄电子限制区域和两个或更多个薄孔限制区域以利用较薄层中的应变补偿,从而拓宽适于用于创建广泛可调谐DBR的材料的选择。 或者,可以根据本发明的替代方法产生分级材料和/或分级界面,以在各种DBR设计中提供有效的电子和/或空穴限制区域。

    Pseudomorphic and dislocation free heteroepitaxial structures
    13.
    发明授权
    Pseudomorphic and dislocation free heteroepitaxial structures 失效
    假异质和无位错异质外延结构

    公开(公告)号:US5294808A

    公开(公告)日:1994-03-15

    申请号:US964638

    申请日:1992-10-23

    申请人: Yu-Hwa Lo

    发明人: Yu-Hwa Lo

    IPC分类号: H01L21/20 H01L27/12

    摘要: Pseudomorphic and dislocation free heteroepitaxial structures are formed in which pseudomorphic and heteroepitaxial layers of any desired thickness are grown on thin, free-standing substrates. In the case of pseudomorphic structures, the substrates are chosen to have a thickness less than the critical thickness above which misfit dislocations will form between the pseudomorphic layers and the substrate. Use of thin substrates in this manner prevents the overall strain energy between the two layers from ever becoming large enough to generate misfit dislocations, regardless of the pseudomorphic layer thickness. This concept can also be employed in the formation of defect free heteroepitaxial layers. If a heteroepitaxial layer is grown on a very thin substrate, an effect known as dislocation gettering will cause any dislocations between the two layers to propagate into the substrate, thus leaving the heteroepitaxial layer defect free. Multiple layer superlattice structures can also be formed which either have a very large lattice mismatch between the top and bottom layers, or strain compensation between the layers and the bottom substrate.

    摘要翻译: 形成假形态和无位错的异质外延结构,其中任何所需厚度的假晶异构外延层在薄的独立的基底上生长。 在假晶体结构的情况下,选择衬底具有小于临界厚度的厚度,在该临界厚度之上,在假晶层和衬底之间将形成失配位错。 以这种方式使用薄的衬底防止两层之间的整体应变能量变得足够大以产生失配位错,而不管假晶层厚度如何。 该概念也可用于形成无缺陷异质外延层。 如果在非常薄的衬底上生长异质外延层,则称为位错吸收的效应将导致两层之间的任何位错传播到衬底中,从而使得异质外延层缺陷无缺陷。 还可以形成多层超晶格结构,其在顶层和底层之间具有非常大的晶格失配,或层与底层之间的应变补偿。

    Apparatus and method for improved optical detection of particles in fluid
    14.
    发明授权
    Apparatus and method for improved optical detection of particles in fluid 有权
    用于改善流体中颗粒的光学检测的装置和方法

    公开(公告)号:US08270781B2

    公开(公告)日:2012-09-18

    申请号:US12091414

    申请日:2006-10-27

    IPC分类号: G02B6/00

    摘要: A number of fluidic-photonic devices for allowing optical detection, systems employing such devices, and related methods of operation and fabrication of such devices are disclosed herein. In at least some embodiments, the devices can serve as flow cytometry devices and/or employ microfluidic channels. Also, in at least some embodiments, the devices are fluidic-photonic integrated circuit (FPIC) devices that employ both fluidic channels and one or more waveguides capable of receiving and/or delivering light, and that can be fabricated using polymeric materials. The fluidic-photonic devices in at least some embodiments are capable of functionality such as on-chip excitation, time-of-flight measurement, and can experience enhanced fluorescence detection sensitivity. In at least some embodiments, the devices employ detection waveguides that are joined by way of a waveguide demultiplexer. In additional embodiments, a variety of techniques can be used to process information received via the waveguides, including an iterative cross-correlation process.

    摘要翻译: 本文公开了许多用于允许光学检测的流体光子学装置,采用这种装置的系统以及这些装置的相关操作和制造方法。 在至少一些实施方案中,装置可以用作流式细胞术装置和/或使用微流体通道。 此外,在至少一些实施例中,装置是采用流体通道和能够接收和/或传送光的一个或多个波导的流体 - 光子学集成电路(FPIC)装置,并且可以使用聚合材料制造。 至少一些实施例中的流体光子学装置能够具有诸如片上激发,飞行时间测量等功能,并且可以体验增强的荧光检测灵敏度。 在至少一些实施例中,器件采用通过波导解复用器连接的检测波导。 在另外的实施例中,可以使用各种技术来处理经由波导接收的信息,包括迭代互相关过程。

    Planar hetero-interface photodetector
    17.
    发明授权
    Planar hetero-interface photodetector 失效
    平面异质界面光电探测器

    公开(公告)号:US06384462B1

    公开(公告)日:2002-05-07

    申请号:US09730692

    申请日:2000-12-06

    IPC分类号: H01L31072

    摘要: A planar avalanche photodetector (APD) is fabricated by forming a, for example, InGaAs absorption layer on a p+-type semiconductor substrate, such as InP, and wafer-bonding to the absorption layer a second p-type semiconductor, such as Si, to form a multiplication layer. The layer thickness of the multiplication layer is substantially identical to that of the absorption layer. A region in a top surface of the p-type Si multiplication layer is doped n+-type to form a carrier separation region and a high electric field in the multiplication region. The APD can further include a guard-ring to reduce leakage currents as well as a resonant mirror structure to provide to wavelength selectivity. The planar geometry furthermore favors the integration of high-speed electronic circuits on the same substrate to fabricate monolithic optoelectronic transceivers.

    摘要翻译: 通过在诸如InP的p +型半导体衬底上形成例如InGaAs吸收层并且与吸收层晶片接合来制造平面雪崩光电检测器(APD),第二p型半导体例如Si, 以形成乘法层。 倍增层的层厚与吸收层基本相同。 p型Si倍增层的上表面的区域掺杂n +型,以在乘法区域中形成载流子分离区域和高电场。 APD还可以包括保护环以减少泄漏电流以及谐振反射镜结构以提供波长选择性。 平面几何形状还有利于将高速电子电路集成在同一衬底上以制造单片光电收发器。

    Compliant universal substrate for epitaxial growth
    18.
    发明授权
    Compliant universal substrate for epitaxial growth 失效
    符合通用衬底的外延生长

    公开(公告)号:US5981400A

    公开(公告)日:1999-11-09

    申请号:US929871

    申请日:1997-09-18

    申请人: Yu-Hwa Lo

    发明人: Yu-Hwa Lo

    IPC分类号: C30B25/18 H01L21/20 H01L21/00

    CPC分类号: C30B25/18 H01L21/2007

    摘要: Compliant universal (CU) substrates and techniques for forming the same facilitate growth of epitaxial layers comprised of materials which are highly lattice mismatched with the substrate material. The CU substrates employ very thin (e.g., 1-20 nm or less) substrate layers which are loosely bonded to a thick bulk material base layer. Because of the loose bonding, the bonding energy of the atoms in the thin substrate layer is reduced, thus greatly increasing the flexibility of the thin substrate layer. This enables the substrate layer to absorb strain or stress imparted during the growth of lattice mismatched epitaxial layers, thus avoiding the formation of defects in the epitaxial layers. The "loose" bonding of the thin substrate layer to the base layer can be achieved in any of a number of ways. First, the thin substrate layer can be bonded at an angle relative to the base layer so that screw dislocations form which provide the desired reduction in bonding energy and increase in flexibility. Other techniques rely on reducing the top surface area of the base layer to reduce the bonding energy. This can be accomplished by making the base material porous at the top surface, or by patterning or roughing the top surface of the base layer.

    摘要翻译: 合适的通用(CU)衬底和用于形成其的技术有助于由与衬底材料高度晶格失配的材料组成的外延层的生长。 CU衬底使用非常薄(例如,1-20nm或更少)衬底层,其松散地结合到厚的体积材料基底层。 由于松散的结合,薄的衬底层中的原子的键合能被减小,从而大大提高了薄衬底层的柔性。 这使得衬底层能够吸收在晶格失配的外延层的生长期间施加的应变或应力,从而避免在外延层中形成缺陷。 薄衬底层与基层的“松散”结合可以以多种方式中的任一种来实现。 首先,可以相对于基底层以一定角度粘结薄的基底层,从而形成提供期望的键合能量降低和增加柔性的螺旋位错。 其他技术依赖于减小基层的顶表面积以降低结合能。 这可以通过使基材在顶表面多孔,或通过图案化或粗糙化基层的顶表面来实现。

    Process for synthesis of cubic GaN on GaAs using NH.sub.3 in an RF
plasma process
    19.
    发明授权
    Process for synthesis of cubic GaN on GaAs using NH.sub.3 in an RF plasma process 失效
    在RF等离子体工艺中使用NH 3在GaAs上合成立方氮化镓的工艺

    公开(公告)号:US5834379A

    公开(公告)日:1998-11-10

    申请号:US680874

    申请日:1996-07-16

    IPC分类号: C23C8/36 C23C11/08

    CPC分类号: C23C8/36

    摘要: A process for synthesizing wide band gap materials, specifically, GaN, employs plasma-assisted and thermal nitridation with NH.sub.3 to convert GaAs to GaN. Thermal assisted nitridation with NH.sub.3 can be employed for forming layers of substantial thickness (on the order of 1 micron) of cubic and hexagonal GaN on a GaAs substrate. Plasma-assisted nitridation of NH.sub.3 results in formation of predominantly cubic GaN, a form particularly useful in optoelectronic devices. Preferably, very thin GaAs membranes are employed to permit formation thereon of GaN layers of any desired thickness without concern for critical thickness constraints. The thin membranes are preferably formed either with an epitaxial bonding technique, or by undercut etching.

    摘要翻译: 用于合成宽带隙材料,特别是GaN的方法采用NH 3等离子体辅助和热氮化将GaAs转化为GaN。 使用NH 3的热辅助氮化可用于在GaAs衬底上形成基本上厚度(约1微米)的立方体和六边形GaN的层。 NH 3的等离子体辅助氮化导致主要形成立方GaN,这是在光电器件中特别有用的形式。 优选地,使用非常薄的GaAs膜以允许在其上形成任何所需厚度的GaN层,而不考虑临界厚度限制。 薄膜优选地通过外延键合技术或通过底切蚀刻来形成。

    Strain-compensated multiple quantum well laser structures
    20.
    发明授权
    Strain-compensated multiple quantum well laser structures 失效
    应变补偿多量子阱激光器结构

    公开(公告)号:US5491710A

    公开(公告)日:1996-02-13

    申请号:US238500

    申请日:1994-05-05

    申请人: Yu-Hwa Lo

    发明人: Yu-Hwa Lo

    摘要: Semiconductor laser structures utilize strain-compensated multiple quantum wells as the laser gain medium to greatly increase the gain and substantially reduce mirror reflectivity constraints in long wavelength (1.3 and 1.55 .mu.m) surface emitting, and other, lasers. The strain-compensated multiple quantum well structures include a plurality of quantum well barrier layer pairs with each quantum well layer being placed under strain and each barrier layer being placed under an equal and opposite strain so that the net overall strain on the quantum well structure is zero. As a result, it can be made as thick as necessary for the lasers to operate efficiently at long wavelengths. Each of the quantum well layers are also preferably p-doped to further increase the optical gain. Another embodiment of the present invention employs the strain-compensated multiple quantum wells in combination with grating-coupling in a surface or edge emitting laser. The gratings are formed on top of the multiple quantum well structure to simplify the fabrication process, and are provided with strong light coupling characteristics to reduce the overall width of the laser structure to as low as 10 microns.

    摘要翻译: 半导体激光结构利用应变补偿多量子阱作为激光增益介质,大大增加了增益,并大大减少了长波长(1.3和1.55μm)表面发射等激光器的镜面反射率约束。 应变补偿多量子阱结构包括多个量子阱阻挡层对,其中每个量子阱层被置于应变下,并且每个势垒层被置于相等且相反的应变下,使得量子阱结构上的净整体应变为 零。 结果,可以使激光器在长波长下有效地操作所需的厚度。 每个量子阱层还优选地是p掺杂的,以进一步增加光学增益。 本发明的另一个实施例将应变补偿多量子阱与表面或边缘发射激光器中的光栅耦合相结合。 光栅形成在多量子阱结构的顶部,以简化制造工艺,并且具有强的光耦合特性以将激光器结构的总宽度减小到低至10微米。