Abstract:
A laser structuring device for a hub of a valve train component may include at least one load carrier for storing and providing at least two valve train components, at least one laser for laser structuring a hub of at least one valve train component, and at least one robot arm having a gripping device for gripping, positioning and holding the at least one valve train component during the laser structuring. The at least one robot arm may be movable to position the at least one valve train component into a machining position.
Abstract:
A driver information system in a vehicle encompasses a viewing direction recognition unit and an indicating unit for indicating a critical event for the case in which the deviation between the driver's viewing direction and the critical event exceeds a limit value.
Abstract:
A semiconductor device has a heat dissipating base; a patterned insulating substrate attached to the heat dissipating base with a solder therebetween; a semiconductor chip attached to a conductive pattern of the patterned insulating substrate with a solder therebetween; a first conductor attached to the semiconductor chip with a solder therebetween; a resin case attached to the heat dissipating base with an adhesive; and a second conductor attached to the first conductor by laser welding. The second conductor formed by rolling has stripe-shaped rolling traces formed on a surface thereof in a rolling direction and is disposed on the first conductor such that the rolling traces are arranged in a same direction.
Abstract:
The present application relates to a cutting head (1) for a device for cutting hair. The cutting head has an optical system (3) which directs a laser beam (7) across a cutting zone (8) in the cutting head. The laser beam has a fast and a slow axis. The optical system has a focus lens (6) configured to form a first focal point (11) of the laser beam in the cutting zone. In one embodiment, the optical system (3) also has a focusing element (15) which refocuses the laser beam to form a second focal point (16) of the laser beam in the cutting zone. In another embodiment, the focus lens forms a focal length of the laser beam in the cutting zone along its fast axis which is greater than a focal length of the laser beam in the cutting zone along its slow axis.
Abstract:
Variation in hole diameter due to heating effects is minimized even if the shortest machining route is set, and machining quality is improved. A printed circuit board to be scanned by a laser beam is divided into a plurality of scan areas (S1). An order of drilling within the scan area is sorted to obtain a scanning route with the shortest distance (S2). The order of the (N+1)th hole and the (N+2)th hole is swapped in each scanning area if it is determined that the distance between the Nth hole and the (N+1)th hole (here, N is an integer in a range of 1≦N≦“the maximum number of holes to be drilled in the area”−1″) is less than a predetermined threshold value, and that N+1 is not correspond to the maximum number of holes to be drilled in the scanning area (S3). The scanning area is machined and then machining each scanning area, specifically in machining the (N+1)th hole, after pausing for a period of a predetermined heat dissipation time if it is determined that the distance between the N-th hole and the (N+1)th hole swapped is less than the predetermined threshold value. Subsequently, machining is performed (S4).
Abstract:
A method and apparatus for modifying low emissivity (low-E) coated glass, so that windows using the processed glass allow uninterrupted use of RF devices within commercial or residential buildings. Glass processed in the manner described herein will not significantly diminish the energy conserving properties of the low-E coated glass. This method and apparatus disrupts the conductivity of the coating in small regions. In an embodiment, the method and apparatus ablates the low-E coating along narrow contiguous paths, such that electrical conductivity can no longer occur across the paths. The paths may take the form of intersecting curves and/or lines, so that the remaining coating consists of electrically isolated areas. The method and apparatus are applicable both to treating glass panels at the factory as well as treating windows in-situ after installation.
Abstract:
A novel apparatus and method for laser-assisted micro-milling. The disclosed laser-assisted micro-milling system and method provides unique micro-milling capabilities for very difficult-to-machine materials, such as ceramics, high temperature alloys and composites. A low power laser beam is focused at a very small spot, thus producing a very high power density, the spot being located just ahead of a mechanical micro-milling cutter to preheat the material prior to machining. This localized heating thermally weakens the workpiece resulting in lower cutting forces, improved surface finish, and longer tool life. The system is capable of micro-milling difficult-to-machine materials that may be conductive or non-conductive with high material removal rates compared to existing systems and methods.
Abstract:
A process for producing an interface unit and also a group of such interface units are specified. The interface unit exhibits a first reference surface for beaming in radiation, a second reference surface for emitting the radiation, and an axis extending in the direction from the first to the second reference surface. The production process comprises the steps of setting an optical path length of the interface unit between the first and second reference surfaces along the axis and the fixing of the set optical path length of the interface unit. The optical path length of the interface unit is set in such a way that radiation of a defined numerical aperture beamed in at the first reference surface exhibits a focus location that is predetermined with respect to the second reference surface in the direction of the axis. A precise and uniform focus location with respect to the second reference surface is obtained.
Abstract:
Provided is a method for marking on a pressed metallic component whose visibility and corrosion resistance in a marking target is ensured. The method includes a step of irradiating a base treatment target region including a marking target region with a laser beam on a first irradiation condition, and a step of irradiating the marking target region with the laser beam on a second irradiation condition, in which a charged energy of the laser beam is set to be smaller on the first irradiation condition than the second irradiation condition, thereby providing between the marking pattern and a non-irradiation region, a base region having a residual stress greater than that of the non-irradiation region and a residual stress smaller than that of the marking pattern, so as to ensure a visibility. Furthermore, a corrosion resistance is ensured by using a metallic member which is heat-treated to enhance the hardness.
Abstract:
A semiconductor device has a heat dissipating base; a patterned insulating substrate attached to the heat dissipating base with a solder therebetween; a semiconductor chip attached to a conductive pattern of the patterned insulating substrate with a solder therebetween; a first conductor attached to the semiconductor chip with a solder therebetween; a resin case attached to the heat dissipating base with an adhesive; and a second conductor attached to the first conductor by laser welding. The second conductor formed by rolling has stripe-shaped rolling traces formed on a surface thereof in a rolling direction and is disposed on the first conductor such that the rolling traces are arranged in a same direction.