Abstract:
Disclosed are systems and methods for directing laser energy to surfaces of materials via elements which have sharp points, and for reducing the adverse effects of particles which become dislodged by scribing and laser machining of materials.
Abstract:
An apparatus for cutting a substrate includes a laser oscillator generating a femtosecond laser beam, a first beam splitter splitting the femtosecond laser beam into first and second femtosecond laser beams, a first condenser lens receiving the first femtosecond laser beam and condensing the first femtosecond laser beam to have a first focal depth, a second condenser lens receiving the second femtosecond laser beam, and condensing the second femtosecond laser beam to have a second focal depth different from the first focal depth, and a second beam splitter receiving and splitting the first femtosecond laser beam condensed through the first condenser lens and the second femtosecond laser beam condensed through the second condenser lens, and irradiating the split first and second femtosecond laser beams at different positions on a substrate to be cut.
Abstract:
A fusion welding method includes the steps of: generating a hybrid laser beam obtained by mixing a low-intensity laser beam with a first high-intensity laser beam and a second high-intensity laser beam; moving the hybrid laser beam along a gap between a first member and a second member; and melting the first member and the second member in the periphery of the gap with the hybrid laser beam, and filling the gap with the melt of the first member and the melt of the second member to weld the first member and the second member, wherein the first high-intensity laser beam is applied to the area of the first member to which the low-intensity laser beam is applied, and the second high-intensity laser beam is applied to the area of the second member to which the low-intensity laser beam is applied.
Abstract:
A Plate polarising beam splitter 22 splits an incident laser beam 21 to form a first laser beam 24 and a second laser beam 25. The first laser beam is optically modified using an arcuate reflector 23 so that the first laser beam has a different divergence or convergence from that of the second laser beam. The first laser beam 24 is focussed at a first focus 27 on an optical axis of a focussing lens 26 and the second laser beam is focussed at a second focus 28 on the optical axis for machining a workpiece. The apparatus is suitable for machining with the laser beams steered by a galvanometer scanner.
Abstract:
A method and device for machining material uses laser radiation, in which the unfocused laser radiation is focused through a focusing optics to a smaller beam cross section. The optical axis of the focused laser radiation, referred to as beam axis, is directed at the material surface. The beam waist, which results from the focusing operation, of the focused laser radiation is held in the region of the interface, which forms of laser radiation and material. The laser radiation is partially absorbed on the interface such that due to induced material removal or induced material displacement the interface and thus also the laser radiation penetrate into the material. The spacing of the beam waist from the upper or lower side of the interface in the axial direction corresponds at most to triple the value of the penetration depth of the interface into the material. The focusing operation is effected such that components of the laser radiation are made divergent not just in the propagation direction downstream of the beam waist but also in the beam waist and/or also in the propagation direction upstream of the beam waist and are thus directed away from the beam axis. These components and angles of divergence are larger than those of the effects of imaging errors, which are inadvertently produced using standard optics and are tolerated.
Abstract:
A nozzle in a nozzle plate for an inkjet printhead is formed by directing a laser beam at a nozzle plate. Accurate control of the divergence of the beam is achieved by splitting the beam into sub-beams, each sub-beam having divergence with an origin lying apart from the point at which the beam is created by splitting, and thereafter recombining the sub-beams. Greater accuracy in the taper and inlet shape of the manufactured nozzle is thereby obtained.
Abstract:
A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.
Abstract:
Method and apparatus for cutting a workpiece made of structural steel or mild steel, i.e. alloy or non-alloy steels, by the use of a transparent or reflecting optical unit for focusing a laser beam, and of an assist gas for the laser beam. The optical unit is of the multifocus type and is chosen from lenses, mirrors and combinations thereof. The assist gas is nitrogen or a nitrogen/oxygen mixture. The method of the invention makes it possible to obtain a low or almost zero oxidation of the cut face and to do so while increasing the cutting performance by about 40% compared with a laser cutting method using nitrogen or a nitrogen/oxygen mixture.
Abstract:
Silica-containing substrates including vias with a narrow waist, electronic devices incorporating a silica-containing substrate, and methods of forming vias with narrow waist in silica-containing substrates are disclosed. In one embodiment, an article includes a silica-containing substrate including greater than or equal to 85 mol % silica, a first surface, a second surface opposite the first surface, and a via extending through the silica-containing substrate from the first surface toward the second surface. The via includes a first diameter at the first surface wherein the first diameter is less than or equal to 100 μm, a second diameter at the second surface wherein the first diameter is less than or equal to 100 μm, and a via waist between the first surface and the second surface. The via waist has a waist diameter that is less than the first diameter and the second diameter such that a ratio between the waist diameter and each of the first diameter and the second diameter is less than or equal to 75%.
Abstract:
A laser processing head includes first and second contact points connected to a power source. The power source generates a current to flow through an electrode wire between the first and second contact points to heat the electrode wire. A laser source generates one or more laser beams having lasing power sufficient to at least partially melt the electrode wire. A coaxial laser head focuses the one or more laser beams at one or more focal points on a workpiece to at least partially melt the electrode wire.