Abstract:
A method for production includes a step for forming concaved molds on a surface of a substrate and a step for growing a diamond heteroepitaxially on the substrate in an atmosphere containing a doping material. The crystal structure of the slope of the concaved molds of the substrate can have the cubic system crystal orientation (111), and the doping material is phosphorous. Further, the substrate is Si, and the slope of the molds can be the Si (111) face. The diamond electron emission device contains projection parts on the surface thereof, where a slope of the projection parts 1 contains a diamond (111) face, and flat parts 2, which are not the projection parts, contain face orientations other than (100) face or (110) face and grain boundaries.
Abstract:
An electron emission element according to the present invention comprises a substrate, and a plurality of protrusions composed of diamond and protruding from the substrate. Each protrusion includes a columnar portion, the side face of which forms an inclination of approximately 90° relative to the surface of the substrate, and a tip portion, which is located on the columnar portion having a spicular end. A conductive layer is formed on the upper part of each columnar portion, and a cathode electrode film, which is electrically connected to the conductive layer, is formed on the side face of the columnar portion.
Abstract:
The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.
Abstract:
A method for fabricating an electron emitter. This emitter structure may be used to form individual emitters or arrays of emitters. The method is comprised of implanting energetic ions into a diamond lattice to form cones or other continuous regions of damaged diamond. These regions are more electrically conducting than the surrounding diamond lattice, and have locally sharp tips at or near the point of entry of the ion into the diamond. The tips may then also be additionally coated with a layer of a wide band-gap semiconductor. An electrically conducting material may also be placed in proximity to the tips to generate an electric field sufficient to extract electrons from the conducting tips into either the region above the surface, or into the wide band-gap semiconductor layer in contact with the tips. Electrical contact is made to the electrically conducting damage tracks and the electrical circuit may be completed with an electrically conducting material on the surface of the wide band-gap semiconductor or diamond, or in the ambient above the surface of the emitter. The surface of the wideband gap semiconductor or diamond may be chemically modified to enhance the emission of electrons from the surface.
Abstract:
A carbon film having an area of insulating material surrounded by an area of conducing material, and an area of material between the area of insulating material and the area of conducting material having a graded dielectric constant which varies from high to low from the area of insulating material to the area of conducting material.
Abstract:
A cathode structure comprising a getter material provided with a diamond film. The getter material may include zirconium, vanadium and iron. Cathode structures may have a substantially rounded configuration including a substantially straight portion. Other cathode structures may have a substantially flat portion, with the diamond film covering essentially the entire flat surface. Methods of manufacturing cathode structures may include conditioning the cathode structure by applying a voltage.
Abstract:
A radio frequency magnetron device for generating radio frequency power includes a cathode at least partially formed from a diamond material. An anode is disposed concentrically around the cathode. An electron field is provided radially between the anode and the cathode. First and second oppositely charged pole pieces are operatively connected to the cathode for producing a magnetic field in a direction perpendicular to the electric field. A filament is provided within the electron tube which when heated produces primary electrons. Alternatively, a voltage is applied to the anode which causes primary electrons to emit from the diamond coated cathode. A portion of the primary electrons travel in a circular path and induce radio frequency power. Another portion of the primary electrons spiral back and collide with the cathode causing the emission of secondary electrons. The secondary electron emission sustains operation of the magnetron device once the device has been started.
Abstract:
A diamond field emitter and a fabrication method thereof, in which a pretreatment is performed on a surface of an Si substrate in order that diamond nuclei are uniformly formed on the Si substrate during a diamond deposition, an oxide film such as an SiO2 film is deposited on the pretreated surface of the Si substrate and removed after an etching process so that diamond powder can be selectively remained during the etching process, thus the effect of the surface pretreatment of the Si substrate remains in the selected portion during the etching process, and it is also possible to uniformly deposit the diamond in said portion. According to the present invention, the diamond field emitter having excellent and uniform field emission characteristic can be manufactured because the field emission is easily achieved at a tip shaped field emission section, and, moreover, the diamond placed on an upper end portion of the tip increases electron emission effect.
Abstract:
A diamond grit surface is formed on a substrate (1) having a metal surface (2), such as nickel, by applying a paste (4) of low-grade diamond grit in a binder to the surface. After driving off the binder, the diamond coated surface is placed in a reactor chamber (10) having a microwave plasma reactor (11) and connected to a hydrogen gas pump (12). The substrate (1) is heated in the hydrogen atmosphere at a reduced pressure. The metal surface (2) acts as a catalyst in the presence of the hydrogen plasma to cause regrowth of the diamond (6), giving an improved size, shape and adhesion. The method may be used to make diamond surfaces in electron emitter devices, circuit boards or abrasive devices.
Abstract:
This invention discloses a method of manufacturing a diamond vacuum device, and more particularly a method of manufacturing a diamond vacuum device which uses a diamond thin film as an electron emitter by electric field. The present invention presents a method of manufacturing a vacuum device for use in high speed, high voltage, using diamond having a negative electron affinity, which can emit electrons even at a low voltage and is also resistant to chemical variations.