Abstract:
The following method is provided: a method of readily fabricating an electron-emitting device, coated with a low-work function material, having good electron-emitting properties with high reproducibility such that differences in electron-emitting properties between electron-emitting devices are reduced. Before a structure is coated with the low-work function material, a metal oxide layer is formed on the structure.
Abstract:
Compositions of carbon nanoflakes are coated with a low Z compound, where an effective electron emission of the carbon nanoflakes coated with the low Z compound is improved compared to an effective electron emission of the same carbon nanoflakes that are not coated with the low Z compound or of the low Z compound that is not coated onto the carbon nanoflakes. Compositions of chromium oxide and molybdenum carbide-coated carbon nanoflakes are also described, as well as applications of these compositions. Carbon nanoflakes are formed and a low Z compound coating, such as a chromium oxide or molybdenum carbide coating, is formed on the surfaces of carbon nanoflakes. The coated carbon nanoflakes have excellent field emission properties.
Abstract:
An emitter containing a metal boride material has an at least partly rounded tip with a radius of 1 μm or less. An electric field can be applied to the emitter and an electron beam is generated from the emitter. To form the emitter, material is removed from a single crystal rod to form an emitter containing a metal boride material having a rounded tip with a radius of 1 μm or less.
Abstract:
An emitter containing a metal boride material has an at least partly rounded tip with a radius of 1 μm or less. An electric field can be applied to the emitter and an electron beam is generated from the emitter. To form the emitter, material is removed from a single crystal rod to form an emitter containing a metal boride material having a rounded tip with a radius of 1 μm or less.
Abstract:
Some embodiments of vacuum electronics call for nanoscale field-enhancing geometries. Methods and apparatus for using nanoparticles to fabricate nanoscale field-enhancing geometries are described herein. Other embodiments of vacuum electronics call for methods of controlling spacing between a control grid and an electrode on a nano- or micron-scale, and such methods are described herein.
Abstract:
The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
Abstract:
A method for manufacturing a field electron emission source includes: providing an insulating substrate; patterning a cathode layer on at least one portion of the insulating substrate; forming a number of emitters on the cathode layer; coating a photoresist layer on the insulating substrate, the cathode layer and the emitters; exposing predetermined portions of the photoresist layer to radiation, wherein the exposed portions are corresponding to the emitters; forming a mesh structure on the photoresist layer; and removing the exposed portions of photoresist layer. The method can be easily performed and the achieved the field electron emission source has a high electron emission efficiency.
Abstract:
An electron emission device includes a polycrystalline film of lanthanum boride, and a size of a crystallite which composes the polycrystalline film is equal to or more than 2.5 nm and equal to or less than 100 nm, preferably the film thickness of the polycrystalline film is equal to or less than 100 nm.
Abstract:
A method for manufacturing a field electron emission source includes: providing an insulating substrate; patterning a cathode layer on at least one portion of the insulating substrate; forming a number of emitters on the cathode layer; coating a photoresist layer on the insulating substrate, the cathode layer and the emitters; exposing predetermined portions of the photoresist layer to radiation, wherein the exposed portions are corresponding to the emitters; forming a mesh structure on the photoresist layer; and removing the exposed portions of photoresist layer. The method can be easily performed and the achieved the field electron emission source has a high electron emission efficiency.