摘要:
An organic thin film transistor is disclosed, which comprises an azole-metal complex compound used as the gate insulating layer. The method of making the self-assembled gate insulating layer is a water-based processing method that enables the azole-metal complex compound to be self-formed on the patterned gate electrode in a water-based solution and serves as a gate insulating layer. The organic thin film transistor (OTFT) of the present invention comprises the azole-metal complex compound used in the gate insulating layer, therefore can be manufactured in a simple, quick, easy way for large quantities, and low cost.
摘要:
Organic thin film transistors with improved mobility are disclosed. The semiconducting layer comprises a semiconductor material of Formula (I): wherein R1 and R2 are independently selected from alkyl, substituted alkyl, aryl, and substituted aryl; and R3 and R4 are independently selected from hydrogen, alkyl, substituted alkyl, aryl, and substituted aryl. A silanized interfacial layer is also present which has alkyl sidechains extending from its surface towards the semiconducting layer.
摘要:
On object of the invention is to provide a non-volatile memory device, in which data can be added to the memory device after a manufacturing process and forgery and the like by rewriting can be prevented, and a semiconductor device including the memory device. Another object of the invention is to provide a highly-reliable, inexpensive, and nonvolatile memory device and a semiconductor device including the memory device. A memory element includes a first conductive layer, a second conductive layer, a first insulating layer with a thickness of 0.1 nm or more and 4 nm or less being in contact with the first conductive layer, and an organic compound layer interposed between the first conductive layer, the first insulating layer, and the second conductive layer.
摘要:
An electronic component, notably one including, for example, a TFT, a storage capacitor, or a crossing between electrically conductive layers of a stack device is disclosed. The electronic component comprises a substrate whereon a first electrically conductive layer forming electrode is provided. A second electrode formed by a second electrically conductive layer is separated from the first electrode by at least a dielectric layer, comprising an interlayer of an electrically insulating material, preferably having high resistance against view (a) electrical breakdown and a further layer of a photo-patternable electrically insulating material.
摘要:
An organic transistor including a substrate 1, a pair of a source electrode 4 and a drain electrode 5, an organic semiconductor layer 6 provided between the source electrode 4 and the drain electrode 5, and a gate electrode 2 provided in association with the organic semiconductor 6 with a gate insulating layer 3 interposed therebetween, wherein the gate insulating layer 3 includes an organic insulating layer 3a containing an insulating organic material and a barrier layer 3b covering a surface of the organic insulating layer and having process resistance.
摘要:
Disclosed herein are a method for fabricating an organic thin film transistor, including treating the surfaces of a gate insulating layer and source/drain electrodes with a self-assembled monolayer (SAM)-forming compound through a one-pot reaction, and an organic thin film transistor fabricated by the method. According to example embodiments, the surface-treatment of the gate insulating layer and the source/drain electrodes may be performed in a single vessel through a single process.
摘要:
A method for fabricating a thin film transistor (TFT) on a substrate includes forming a gate electrode; forming a semiconductor layer being insulated from the gate electrode and partially overlapped with the gate electrode; sequentially forming first and second gate insulating layers between the gate electrode and the semiconductor layer, wherein the first gate insulating layer is formed of a material different from the second gate insulating layer and at least one of the first and second gate insulating layers includes a sol-compound; and forming source and drain electrodes at both sides of the semiconductor layer.
摘要:
The present disclosure relates to a display device comprising an insulating substrate; a source electrode and a drain electrode on the insulating substrate and separated by a channel area; an organic semiconductor layer formed in the channel area and on at least a portion of the source electrode and at least a portion of the drain electrode; and a self-assembly monolayer having a first portion disposed between the organic semiconductor layer and the source electrode and a second portion disposed between the organic semiconductor layer and the drain electrode to reduce contact resistance between the electrodes and the organic semiconductor layer. Thus, embodiments of present invention provide a display device including a TFT that is enhanced in its performance.
摘要:
A thin film transistor includes: a gate electrode; source and drain electrodes insulated from the gate electrode; an organic semiconductor layer that is insulated from the gate electrode and is electrically connected to the source and drain electrodes; an insulating layer that insulates the gate electrode from the source and drain electrodes or the organic semiconductor layer; and an ohmic contact layer that is interposed between the source/drain electrodes and the organic semiconductor and contains a compound having a hole transporting unit. By providing the ohmic contact layer, the ohmic contact between source/drain electrodes and the organic semiconductor layer can be effectively achieved and the adhesive force between the source/drain electrodes and the organic semiconductor layer is increased. In addition, a flat panel display having improved reliability can be obtained using the thin film transistor.
摘要:
Aspects of the invention can provide a thin-film transistor having good transistor characteristics and operable with a low driving voltage, a method of producing such a thin-film transistor, a high-reliability electronic circuit, a display, and an electronic device. In an exemplary thin-film transistor according to the invention, a gate electrode can be formed on a substrate via an underlying layer, and a gate insulating layer can be formed on the substrate such that the gate electrode is covered with the gate insulating layer. A source electrode and a drain electrode are formed on the gate insulating layer such that they are separated from each other by a gap formed just above the gate electrode. An organic semiconductor layer can be formed thereon such that the electrodes are covered with the organic semiconductor layer. A region between the electrodes of the organic semiconductor layer functions as a channel region. A protective layer can be arranged on the organic semiconductor layer. This thin-film transistor is characterized in that the organic semiconductor layer is formed after the gate insulating layer is formed, and the gate insulating layer has the capability of causing the organic semiconductor layer to be aligned.