THREE DIMENSIONAL STRAINED QUANTUM WELLS AND THREE DIMENSIONAL STRAINED SURFACE CHANNELS BY GE CONFINEMENT METHOD
    202.
    发明申请
    THREE DIMENSIONAL STRAINED QUANTUM WELLS AND THREE DIMENSIONAL STRAINED SURFACE CHANNELS BY GE CONFINEMENT METHOD 有权
    通过三维尺寸应变量子阱和三维应变表面通道

    公开(公告)号:US20090085027A1

    公开(公告)日:2009-04-02

    申请号:US11864963

    申请日:2007-09-29

    Abstract: The present disclosure describes a method and apparatus for implementing a 3D (three dimensional) strained high mobility quantum well structure, and a 3D strained surface channel structure through a Ge confinement method. One exemplary apparatus may include a first graded SiGe fin on a Si substrate. The first graded SiGe fin may have a maximum Ge concentration greater than about 60%. A Ge quantum well may be on the first graded SiGe fin and a SiGe quantum well upper barrier layer may be on the Ge quantum well. The exemplary apparatus may further include a second graded SiGe fin on the Si substrate. The second graded SiGe fin may have a maximum Ge concentration less than about 40%. A Si active channel layer may be on the second graded SiGe fin. Other high mobility materials such as III-V semiconductors may be used as the active channel materials. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.

    Abstract translation: 本公开描述了通过Ge约束法实现3D(三维)应变高迁移量子阱结构和3D应变表面通道结构的方法和装置。 一个示例性设备可以包括在Si衬底上的第一梯度SiGe鳍。 第一级的SiGe鳍可以具有大于约60%的最大Ge浓度。 Ge量子阱可以在第一等级的SiGe鳍上,SiGe量子阱上阻挡层可以在Ge量子阱上。 示例性设备还可以包括在Si衬底上的第二渐变SiGe鳍。 第二级的SiGe鳍可以具有小于约40%的最大Ge浓度。 Si活性沟道层可以在第二级别的SiGe鳍上。 可以使用诸如III-V族半导体的其它高迁移率材料作为活性通道材料。 当然,在不脱离本实施例的情况下,可以进行许多替代,变化和修改。

    High Hole Mobility P-Channel Ge Transistor Structure on Si Substrate
    203.
    发明申请
    High Hole Mobility P-Channel Ge Transistor Structure on Si Substrate 有权
    Si基板上的高孔迁移率P沟道Ge晶体管结构

    公开(公告)号:US20090057648A1

    公开(公告)日:2009-03-05

    申请号:US11847780

    申请日:2007-08-30

    Abstract: The present disclosure provides an apparatus and method for implementing a high hole mobility p-channel Germanium (“Ge”) transistor structure on a Silicon (“Si”) substrate. One exemplary apparatus may include a buffer layer including a GaAs nucleation layer, a first GaAs buffer layer, and a second GaAs buffer layer. The exemplary apparatus may further include a bottom barrier on the second GaAs buffer layer and having a band gap greater than 1.1 eV, a Ge active channel layer on the bottom barrier and having a valence band offset relative to the bottom barrier that is greater than 0.3 eV, and an AlAs top barrier on the Ge active channel layer wherein the AlAs top barrier has a band gap greater than 1.1 eV. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.

    Abstract translation: 本公开提供了一种在硅(“Si”)衬底上实现高空穴迁移率p沟道锗(“Ge”)晶体管结构的装置和方法。 一个示例性装置可以包括包括GaAs成核层,第一GaAs缓冲层和第二GaAs缓冲层的缓冲层。 该示例性装置还可以包括第二GaAs缓冲层上的底部阻挡层,并具有大于1.1eV的带隙,底部势垒上的Ge活性通道层,并且相对于底部势垒的价带偏移大于0.3 eV和Ge活性通道层上的AlAs顶部势垒,其中AlAs顶部势垒具有大于1.1eV的带隙。 当然,在不脱离本实施例的情况下,可以进行许多替代,变化和修改。

    Multi-gate structure and method of doping same
    205.
    发明申请
    Multi-gate structure and method of doping same 审中-公开
    多栅极结构及掺杂方法

    公开(公告)号:US20080237719A1

    公开(公告)日:2008-10-02

    申请号:US11729198

    申请日:2007-03-28

    CPC classification number: H01L29/785 H01L29/66795 H01L29/66803

    Abstract: A multi-gate structure includes a substrate (110, 210, 410), an electrically insulating layer (120, 220, 420) over the substrate, and a first semiconducting fin (130, 230, 430) above the electrically insulating layer. The first semiconducting fin includes a top region (131, 231, 431), a first side region (132, 232, 432), and a second side region (133, 233, 433). The top region, the first side region, and the second side region have doping concentrations that are substantially equal to each other. The multi-gate structure may be made by depositing a solid source material (510) over the semiconducting fin, and by annealing the multi-gate structure such that dopants from the solid source material diffuse into the semiconducting fin and uniformly dope the top region and the first and second side regions.

    Abstract translation: 多栅极结构包括衬底(110,210,410),在衬底上方的电绝缘层(120,220,420)以及在电绝缘层上方的第一半导电翅片(130,230,430)。 第一半导体鳍片包括顶部区域(131,231,431),第一侧面区域(132,232,432)和第二侧面区域(133,233,433)。 顶部区域,第一侧面区域和第二侧面区域具有彼此基本相等的掺杂浓度。 多栅极结构可以通过在半导体鳍上沉积固体源材料(510)并且通过退火多栅极结构使得来自固体源材料的掺杂剂扩散到半导体翅片中并且均匀地掺杂顶部区域和 第一和第二侧区域。

    Strain-inducing semiconductor regions
    207.
    发明申请
    Strain-inducing semiconductor regions 有权
    应变诱导半导体区域

    公开(公告)号:US20070284613A1

    公开(公告)日:2007-12-13

    申请号:US11450744

    申请日:2006-06-09

    Abstract: A method to form a strain-inducing semiconductor region comprising three or more species of charge-neutral lattice-forming atoms is described. In one embodiment, formation of a strain-inducing semiconductor region, comprising three or more species of charge-neutral lattice-forming atoms, laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate. Thus, a strained crystalline substrate may be provided. In another embodiment, a semiconductor region with a crystalline lattice of three or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate.

    Abstract translation: 描述了形成包含三种或更多种电荷 - 中性晶格形成原子的应变诱导半导体区域的方法。 在一个实施方案中,形成包含三个或更多种电荷 - 中性晶格形成原子的应变诱导半导体区域,横向邻近晶体衬底导致赋予晶体衬底的单轴应变。 因此,可以提供应变晶体衬底。 在另一个实施方案中,具有三种或更多种电荷 - 中性晶格形成原子的晶格的半导体区域向晶体衬底施加应变,其中半导体区域的晶格常数不同于晶体衬底的晶格常数。

Patent Agency Ranking