Abstract:
Technology for reducing signal interference is disclosed. Semi-static signaling can be received at a user equipment (UE) from a neighboring evolved node (eNB). The semi-static signaling can include potential configurations of signal parameters used at the neighboring eNB. The UE can receive dynamic signaling from the neighboring eNB that includes a subset of the potential configurations of signal parameters used at the neighboring eNB. Signal interference that is caused by the neighboring eNB can be reduced using the semi-static signaling and the dynamic signaling.
Abstract:
Coordinated Multipoint (CoMP) involves multiple transmission points or cells coordinating their individual transmissions so that a target user equipment (LTE) experiences enhanced signal reception and/or reduced interference. In order to optimally implement downlink CoMP, a serving cell needs to obtain channel state information (CSI) for the downlink channels from the multiple transmission points to the UE. This disclosure deals with radio resource control (RRC) signaling for configuring the UE to obtain and report CSI for those downlink channels.
Abstract:
Embodiments of an eNB and method for supporting communication with UEs on an LTE network in an unlicensed frequency band are generally described herein. The eNB may be configured to transmit a first LTE signal that includes a first reference signal during an active transmission period of a Wi-Fi network in the unlicensed frequency band, and to restrict frequency spectra used for the transmission of the first LTE signal from frequency spectra used by the Wi-Fi network during the active transmission period. The first reference signal may enable maintenance of synchronization between the eNB and the UEs at least during the active transmission period. The eNB may be further configured to transmit a second LTE signal during a silence period of the Wi-Fi network in frequency spectra used by the Wi-Fi network during the active transmission period.
Abstract:
Systems and methods provide channel state information feedback in a multiple-input multiple-output (MIMO) system. A method quantizes a pre-coding matrix indicator (PMI) and feeds it back from a user equipment (UE) to an evolved Node B (eNodeB). The method may use codebooks for vector quantization of optimal horizontal direction and a scalar quantizer to quantize an optimal vertical direction from the eNodeB to a selected UE.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for handling interference measurements in a wireless communication network. An apparatus may include computer-readable media having instructions and processors coupled with the computer-readable media and configured to execute the instructions to identify, for a serving eNB, a neighboring eNB for which signal interference measurements are to be performed by one or more wireless devices served by the serving eNB, and request that the neighboring eNB transmit typical interference signals within data units which are configured for, and may or may not have, a scheduled physical downlink shared channel transmission. The wireless devices may be configured to perform the signal interference measurements based at least in part on the typical interference signals, which may include non-zero-power signals or zero-power signals. Other embodiments may be described and claimed.
Abstract:
A generation node B (gNB) for a fifth-generation (5G) new radio (NR) or a sixth-generation (6G) network is configured for slot-less operation at frequencies above a 52.6 GHz carrier frequency. The gNB may generate signalling to configure a user equipment (UE) with a gap between demodulation reference signal (DMRS) symbols for an associated physical downlink shared channel (PDSCH). The gNB may also encode the DMRS symbols for transmission in accordance with the gap and may encode the associated PDSCH for transmission during the gap between the DMRS symbol transmissions at symbol times following the DMRS symbols.
Abstract:
A generation node B (gNB) configured for aperiodic channel state information reference signal (CSI-RS) triggering and transmission may encode signalling for transmission to a user equipment (UE). The signalling to indicate an aperiodic Triggering Offset (aperiodicTriggeringOffset). The aperiodic Triggering Offset may comprise a slot offset. The gNB may encode a downlink control information (DCI) for transmission that may trigger transmission of a CSI-RS in one or more aperiodic CSI-RS resource set(s) (i.e., in one or more slots (n)). The DCI triggers transmission of the aperiodic CSI-RS within a triggered slot with the slot offset (i.e., the aperiodic TriggeringOffset). The gNB may transmit the CSI-RS in resource elements of the triggered slot in accordance with the slot offset, when CSI-RS resources are available in the slot at the slot offset. The gNB may postpone transmission of the aperiodically triggered CSI-RS to a first available downlink slot when the CSI-RS resources are not available in the triggered slot at the slot offset.
Abstract:
A user equipment (UE configured for multi-Transmission-Reception Point (M-TRP) operation in a fifth-generation (5G) new radio (NR) network with DCI activated PUCCH repetition with TX beam cycling may multiplex UCI on a scheduled PUSCH transmission to a first TRP, multiplex the UCI on a scheduled PUSCH transmission to a second TRP and drop repetitions of the PUCCH when a first repetition of the PUCCH overlaps the scheduled PUSCH transmission to the first TRP and the second repetition of the PUCCH overlaps with a scheduled PUSCH transmission to the second TRP. For multiplexing the UCI and dropping the PUCCH repetitions, a timeline condition may also need to be satisfied.
Abstract:
Systems, apparatuses, methods, and computer-readable media are provided to transmit multiple channel state information (CSI)-reference signal (RS) resources in different slots for non-Codebook based physical uplink shared channel (PUSCH) transmission in multi-transmission-reception point (TRP) operation. Other embodiments may be described and claimed.
Abstract:
Systems, apparatuses, methods, and computer-readable media are provided for SRS configuration for antenna switching and/or carrier switching. The described techniques may be used in multi-TRP and/or single TRP communication. Also described are techniques for beam configuration for SRS with antenna switching. For example, embodiments provide techniques for beam configuration/update for SRS antenna switching considering the beam change signaling received during the antenna switching procedure. Other embodiments may be described and claimed.