Abstract:
A method for coating a micro-electromechanical systems device with a silane coupling agent by a) mixing the silane coupling agent with a low volatile matrix material in a coating source material container; b) placing the micro-electromechanical systems device in a vacuum deposition chamber which in connection with the coating source material container; c) pumping the vacuum deposition chamber to a predetermined pressure; and maintaining the pressure of the vacuum deposition chamber for a period of time in order to chemically vapor deposit the silane coupling agent on the surface of the micro-electromechanical systems device.
Abstract:
A chemical approach for the attachment of molecules on a surface of a MEMS device, preferably, to provide a monolayer film thereon of relatively low surface energy.
Abstract:
A micromechanical component includes an anti-adhesive layer, formed from at least one fluorine-containing silane, applied to at least parts of its surface for reducing surface forces. To increase mechanical and thermal load capacity, the anti-adhesive layer is provided as a multilayer coating which is formed from at least one metal oxide layer and at least one layer composed of at least one fluorine-containing silane.
Abstract:
A micro-electromechanical device is formed on a substrate. The device has sliding, abrading or impacting surfaces. At least one of these surfaces is covered with an anti-stiction material. The anti-stiction material is provided from a slicon compound precursor (e.g. silane, silanol) or multiple silicon compound precursors. Preferably the precursor(s) is fluorinatednullmore preferably perfluorinated, and is deposited with a solvent as a low molecular weight oligomer or in monomeric form. Examples include silanes (fluorinated or not) with aromatic or polycyclic ring sturctures, and/or silanes (fluorinated or not) having alkenyl, alkynyl, epoxy or acrylate groups. Mixtures either or both of these groups with alkyl chain silanes (preferably fluorinated) are also contemplated.
Abstract:
This invention discloses a process for forming durable anti-stiction surfaces on micromachined structures while they are still in wafer form (i.e., before they are separated into discrete devices for assembly into packages). This process involves the vapor deposition of a material to create a low stiction surface. It also discloses chemicals which are effective in imparting an anti-stiction property to the chip. These include polyphenylsiloxanes, silanol terminated phenylsiloxanes and similar materials.
Abstract:
A method for manufacturing micromechanical components, and a micromechanical component, in which a movable element is produced on a sacrificial layer. In a subsequent step the sacrificial layer beneath the movable element is removed so that the movable element becomes movable. After removal of the sacrificial layer, a protective layer is deposited on a surface of the movable element. Silicon oxide and/or silicon nitride is used for the protective layer.
Abstract:
A method for producing a micromechanical structure, and a micromechanical structure having a movable structure and a stationary structure made of silicon. In the method for producing the micromechanical structure, in one process step, a superficial metal-silicide layer is produced in the movable structure and/or the stationary structure.
Abstract:
The micro-mechanical structure includes an anti-stiction layer formed by plasma enhanced chemical vapor deposition. The anti-stiction layer is formed on only the area of a substrate other than the top of a movable structure and a part of an electrode that is subsequently bonded to a wire.
Abstract:
A micro-electro mechanical switch having a restoring force sufficiently large to overcome stiction is described. The switch is provided with a deflectable conductive beam and multiple electrodes coated with an elastically deformable conductive layer. A restoring force which is initially generated by a single spring constant k0 upon the application of a control voltage between the deflectable beam and a control electrode coplanar to the contact electrodes is supplemented by adding to k0 additional spring constants k1, . . . , kn provided by the deformable layers, once the switch nears closure and the layers compress. In another embodiment, deformable, spring-like elements are used in lieu of the deformable layers. In an additional embodiment, the compressible layers or deformable spring-like elements are affixed to the deflecting beam facing the switch electrodes
Abstract:
A method for manufacturing a micromechanical part, having a plurality of components that move with respect to one another, from a substrate, with a conductive coating being applied to at least one facing surface of the plurality of components that move with respect to one another.