Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
An automated adaptive optics and laser projection system is described. The automated adaptive optics and laser projection system includes an adaptive optics system and a compact laser projection system with related laser guidance programming used to correct atmospheric distortion induced on light received by a telescope. Control of the automated adaptive optics and laser projection system is designed in a modular manner in order to facilitate replication of the system to be used with a variety of different telescopes. Related methods are also described.
Abstract:
Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
Abstract:
What is disclosed is a system and method for processing image data acquired using a multi-band infrared camera system with a spectral mosaic filter arranged in a geometric pattern without having to perform a demosaicing that is typical with processing data from an array of sensors. In one embodiment, image data that has been captured using a camera system that has a spectral filter mosaic comprising a plurality of spectral filters arrayed on a grid. A material index is determined, using intensity values collected by sensor elements associated with a cell's respective spectral filters. All of the material indices collectively generate a material index image. Thereafter, material identification is performed on the material index image using, for example, pixel classification. Because the demosaicing step can be effectively avoided, image processing time is reduced. The teachings hereof find their uses in a wide array of applications including automated HOV/HOT violation detection.
Abstract:
Snapshot spectral imagers comprise an imaging lens, a dispersed image sensor and a restricted isometry property (RIP) diffuser inserted in the optical path between the source image and the image sensor. The imagers are used to obtain a plurality of spectral images of the source object in different spectral bands in a single shot. In some embodiments, the RIP diffuser is one dimensional. An optional disperser may be added in the optical path, to provide further dispersion at the image sensor. In some embodiments, all imager components except the RIP diffuser may be part of a digital camera, with the RIP diffuser added externally. In some embodiments, the RIP diffuser may be included internally in a digital camera.
Abstract:
A device such as a filter or reflector includes a conductive layer including a periodic pattern of elements. The elements have shapes and sizes configured such that a transmittance or reflectance spectrum of the conductive layer has a drop at a long-wavelength end. The elements have a period configured such that the spectrum has a dip at a Plasmon mode resonant wavelength. The spectrum further includes a peal—between the dip and the drop.
Abstract:
A polarization image sensor includes: photodiodes arranged on an image capturing plane; a color mosaic filter in which color filters in multiple different colors are arranged to face the photodiodes; an optical low-pass filter which covers the color mosaic filter; and polarization optical elements located closer to a light source than the optical low-pass filter is. Each polarization optical element covers an associated one of the photodiodes and makes light which is polarized in a predetermined direction in a plane that is parallel to the image capturing plane incident onto the optical low-pass filter. The color filters are arranged so that light that has passed through polarization optical elements is transmitted through an associated one of the color filters in a single color. Each color filter covers multiple photodiodes.
Abstract:
A method for manufacturing a sloped structure is disclosed. The method includes the steps of: (a) forming a sacrificial film above a substrate; (b) forming a first film above the sacrificial film, the first film having a first portion connected to the substrate, a second portion located above the sacrificial film, a third portion located between the first portion and the second portion, and a thin region in a portion of the third portion or in a boundary section between the second portion and the third portion and having a thickness smaller than the first portion; (c) removing the sacrificial film; and (d) bending the first film in the thin region, after the step (c), thereby sloping the second portion of the first film with respect to the substrate.
Abstract:
The hyperspectral detector systems and methods disclosed herein include capturing a context image and a single-column spectral image that falls within the context image. The context and spectral images are then combined to form a fused image. Using the fused image, the spectral image is panned over the scene and within the context image to capture spectral signatures within the scene. The spectral signatures are compared to reference spectral signatures, and the locations of the one or more spectral signatures within the context image are marked. The systems and methods obviate the need to store and process large amounts of spectral data and allow for real-time display of the fused context image and spectral image, along with the marked locations of matched spectral signatures.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object. In one aspect, the hyperspectral imaging system includes a fore optic with optics for acquiring and projecting an image from a remote object, a scannable slit mechanism with a plurality of slits for receiving the projected image, where the projected image simultaneously illuminates two or more of the plurality of slits, a spectrometer for receiving and dispersing images passing through the two or more simultaneously-illuminated slits, and a two-dimensional image sensor for recording images received from the spectrometer, where the images received from different slits are recorded on different sets of detection elements of the two-dimensional image sensor.