Abstract:
A method of depositing a nanomaterial onto a donor surface comprises depositing a composition comprising nanomaterial onto a donor surface from a micro-dispenser. In another aspect of the invention there is provided a method of depositing a nanomaterial onto a substrate. Methods of making a device including nanomaterial are disclosed. An article of manufacture comprising nanomaterial and a material capable of transporting charge disposed on a backing member is disclosed.
Abstract:
A method comprising depositing an ink comprising a nanomaterial, a material capable of transporting charge, and a liquid vehicle from a micro-dispenser onto a layer of a device is disclosed. A method comprising depositing an ink comprising a nanomaterial, a material capable of transporting charge, and a liquid vehicle from a micro-dispenser onto a second material capable of transporting charge in a predetermined arrangement is also disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. In certain preferred embodiments, a micro-dispenser comprises an inkjet printhead. Methods for fabricating devices including a nanomaterial and method for fabricating an array of devices including a nanomaterial are also disclosed. An ink composition including a nanomaterial, a material capable of transporting charge, and a liquid vehicle is also disclosed.
Abstract:
A white-light emitting lighting device comprising one or more light emitting light sources (preferably solid state semiconductor light emitting diodes) that emit off-white light during operation, wherein the off-white light includes a spectral output including at least one spectral component in a first spectral region from about 360 nm to about 475 nm, at least one spectral component in a second spectral region from about 475 nm to about 575 nm, and at least one deficiency in at least one other spectral region, and an optical component comprising an optical material for converting at least a portion of the off-white light to one or more predetermined wavelengths, such that light emitted by the lighting device comprises white light, wherein the optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is an optical component, lighting fixture, a cover plate for a lighting fixture, and methods.
Abstract:
A method for preparing semiconductor nanocrystals includes reacting one or more semiconductor nanocrystal precursors in a liquid medium in the presence of a boronic compound at a reaction temperature resulting in semiconductor nanocrystals. Semiconductor nanocrystals are also disclosed.
Abstract:
A display comprises a substrate and a light-emitting device disposed on the substrate, wherein the substrate comprises a semiconducting material and a circuit for controlling the light-emitted from the light-emitting device. A light-emitting device includes a light-emitting material comprising semiconductor nanocrystals and an electrode in electrical connection with the light-emitting material on a side thereof remote from the substrate.
Abstract:
A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.
Abstract:
A method for making semiconductor nanocrystals is disclosed, the method comprising adding a secondary phosphine chalcogenide to a solution including a metal source and a liquid medium at a reaction temperature to form a reaction product comprising a semiconductor comprising a metal and a chalcogen, and quenching the reaction mixture to form quantum dots. Methods for overcoating are also disclosed. Semiconductor nanocrystals are also disclosed.
Abstract:
A composition useful for altering the wavelength of visible or invisible light is disclosed. The composition comprising a solid host material and quantum confined semiconductor nanoparticles, wherein the nanoparticles are included in the composition in amount in the range from about 0.001 to about 15 weight percent based on the weight of the host material. The composition can further include scatterers. An optical component including a waveguide component and quantum confined semiconductor nanoparticles is also disclosed. A device including an optical component is disclosed. A system including an optical component including a waveguide component and quantum confined semiconductor nanoparticles and a light source optically coupled to the waveguide component is also disclosed. A decal, kit, ink composition, and method are also disclosed. A TFEL including quantum confined semiconductor nanoparticles on a surface thereof is also disclosed.
Abstract:
A method for making a device, the method comprising: depositing a layer comprising quantum dots over a first electrode, the quantum dots including ligands attached to the outer surfaces thereof; treating the surface of the deposited layer comprising quantum dots to remove the exposed ligands; and forming a device layer thereover. Also disclosed is a device made in accordance with the disclosed method. Another aspect of the invention relates to a device comprising a first electrode and a second electrode, and a layer comprising quantum dots between the two electrodes, the layer comprising quantum dots deposited from a dispersion that have been treated to remove exposed ligands after formation of the layer in the device. Another aspect of the invention relates to a device comprising a first electrode and a second electrode, a layer comprising a first inorganic semiconductor material disposed between the first and second electrodes, and a plurality of quantum dots disposed between the first and second electrodes, the outer surface of the quantum dots comprising a second inorganic semiconductor material, wherein the composition of the first inorganic semiconductor material and the second inorganic semiconductor material is the same (without regard to any ligands on the outer surface of the quantum dot).
Abstract:
A method for preparing a device, the method comprising: forming a first device layer over a first electrode, the layer comprising a metal oxide formed from a sol-gel composition that does not generate acidic by-products, and forming a second electrode over the first device layer, wherein the method further includes forming a layer comprising quantum dots over the first electrode before or after formation of the first device layer. Also disclosed is a device comprising a first device layer formed over a first electrode, the first device layer comprising a metal oxide formed by sol-gel processing that does not include acidic by-products, a second electrode over the first device layer, and a layer comprising quantum dots disposed between the first device layer and one of the two electrodes. A device prepared by the method is also disclosed.