Abstract:
A monolithic multi-layer capacitor having a central capacitively active area and two electrode joining section separated from the active area by sloped sections has dielectric layers about 1 micron thick in the active area which taper gradually to zero thickness in the sloped sections. Electrode layers in the active area have a thickness in the range from 200 to 500 Angstroms and sufficient thickness throughout the sloped sections for adequate current carrying capacity. Various acrylates are used for the dielectric layers, the number of layers ranging from a few to many thousands.Apparatus and methods for the fabrication of such capacitors on a high speed, production scale basis employ techniques for the flash evaporation of highly reactive monomers of acrylate dielectric materials. The vapor is controllably directed to a deposition surface for condensation and subsequent curing by a field enhanced gas discharge electron beam source. The control of the dielectric vapor is accomplished by adjacent gas streams of an inert gas directed to areas of the deposition surface where deposition of the electrode material is unwanted. Monomers of the dielectric material are ultrasonically atomized in preparation for flash evaporation.
Abstract:
A high stress corrosion resistant metallized capacitor is disclosed having at least one electrode consisting of a metallic bilayer vapor deposited on a dielectric strip. In a preferred embodiment, a layer of aluminum is covered by a second metal layer which is between about 1/6 to 1/12 the thickness of the aluminum layer and is continuous throughout. The aluminum layer extends beyond the second layer in a marginal area.
Abstract:
An organic release agent is vacuum deposited over a substrate and surface treated with a plasma or ion-beam source in a gas rich in oxygen-based functional groups to harden a very thin layer of the surface of the deposited layer in passivating environment. Aluminum is subsequently vacuum deposited onto the hardened release layer to form a very flat and specular thin film. The film is exposed to a plasma gas containing oxygen or nitrogen to passivate its surface. The resulting product is separated from the substrate, crushed to break up the film into aluminum flakes, and mixed in a solvent to separate the still extractable release layer from the aluminum flakes. The surface treatment of the release layer greatly reduces wrinkles in the flakes, improving the optical characteristics of the flakes. The passivation of the flake material virtually eliminates subsequent corrosion from exposure to moisture.
Abstract:
An organic release agent is vacuum deposited over a substrate and surface treated with a plasma or ion-beam source in a gas rich in oxygen-based functional groups to harden a very thin layer of the surface of the deposited layer in a passivating environment. Aluminum is subsequently vacuum deposited onto the hardened release layer to form a very flat and specular thin film. The film is exposed to a plasma gas containing oxygen or nitrogen to passivate its surface. The resulting product is separated from the substrate, crushed to brake up the film into aluminum flakes, and mixed in a solvent to separate the still extractable release layer from the aluminum flakes. The surface treatment of the release layer greatly reduces wrinkles in the flakes, improving the optical chracteristics of the flakes. The passivation of the flake material virtually eliminates subsequent corrosion from exposure to moisture.
Abstract:
In a continuous in-vacuum process for the manufacture of a film metallized with aluminum, the aluminum layer is exposed to a passivating agent, inline, immediately after deposition and prior to rewinding of the film onto a take-up roller. Passivation is carried out by plasma treatment in an oxidizing atmosphere (oxygen, nitrogen or others). The resulting product exhibits no peel-off problems during unwinding of the take-up roller and greatly improved corrosion resistance.
Abstract:
A composite multi-layer barrier is produced by first vapor depositing a barrier under vacuum over a substrate and then depositing an additional barrier at atmospheric pressure in a preferably thermoplastic layer. The resulting multi-layer barrier is used to coat an article in a lamination process wherein the thermoplastic layer is fused onto itself and the surface of the article. The vacuum-deposited barrier may include of a first leveling polymer layer followed by an inorganic barrier material sputtered over the leveling layer and of an additional polymeric layer flash evaporated, deposited, and cured under vacuum. The thermoplastic polymeric layer is then deposited by extrusion, drawdown or roll coating at atmospheric pressure. The resulting multi-layer barrier may be stacked using the thermoplastic layer as bonding agent. Nano-particles may be included in the thermoplastic layer to improve barrier properties. A desiccant material may also be included or added as a separate layer.
Abstract:
A plasma is produced in a treatment space (58) by diffusing a plasma gas at atmospheric pressure and subjecting it to an electric field created by two metallic electrodes (54,56) separated by a dielectric material (64), and a precursor material is introduced into the treatment space to coat a substrate film or web (14) by vapor deposition or atomized spraying at atmospheric pressure. The deposited precursor exposed to an electromagnetic field (AC, DC, or plasma) and then it is cured by electron-beam, infrared-light, visible-light, or ultraviolet-light radiation, as most appropriate for the particular material being deposited. Additional plasma post-treatment may be used to enhance the properties of the resulting coated products.
Abstract:
A moisture vapor permeable metalized composite sheet is formed by coating a moisture vapor permeable sheet with at least one metal layer and at least one outer organic coating layer. The moisture vapor permeability of the composite sheet is at least about 80% of the moisture vapor permeability of the starting sheet. The composite sheet provides a barrier to air and liquid water infiltration while having high moisture vapor permeability and good thermal barrier properties. The composite sheet material is suitable for use as a building construction wrap such as roof lining and house wrap.
Abstract:
A moisture vapor permeable metalized composite sheet is formed by coating a moisture vapor permeable sheet-with at least one metal layer and at least one outer organic coating layer. The moisture vapor permeability of the composite sheet is at least about 80% of the moisture vapor permeability of the starting sheet. The composite sheet provides a barrier to air and liquid water infiltration while having high moisture vapor permeability and good thermal barrier properties. The composite sheet material is suitable for use as a building construction wrap such as roof lining and house wrap.
Abstract:
A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-linked acrylate polymers on specific thermoplastic or thermoset films. Radiation curing is employed to cross-link the acrylate monomer. The hybrid film can be produced in-line with the metallization or ceramic coating process, in the same vacuum chamber and with minimal additional cost.