Abstract:
A semiconductor device with electroless plating metal connecting layer and a method for fabricating the same are proposed. A supporting board with at least one cavity is provided. At least one semiconductor chip with a plurality of copper electrode pads is received in the cavity and an insulating protecting layer is formed on the semiconductor chip. A plurality of holes is formed in the insulating protecting layer to expose the copper electrode pads. An electroless plating metal connecting layer is formed on the copper electrode pads by electroless plating. Therefore, the electrically connecting process of the semiconductor chip is simplified and easily practiced, and the fabrication cost is reduced.
Abstract:
A method for releasing stress of an embedded chip and a chip embedded structure are proposed. Cutting processes are performed to a semiconductor chip before it is embedded in a circuit board to form cut-way portions at edges of the chip so as to allow stress to be released when the chip is subsequently embedded in the circuit board and a filler material is filled between the chip and the circuit board.
Abstract:
A circuit board structure with capacitors embedded therein and a method for fabricating the same are disclosed. The structure comprises at least two core layers individually comprising a dielectric layer having two opposite surfaces, circuit layers disposed on the outsides of the two opposite surfaces of the dielectric layer, and at least two capacitors embedded respectively on the insides of the two opposite surfaces of the dielectric layer and individually electrically connecting with the circuit layer at the same side; at least one adhesive layer disposed between the core layers to combine the core layers as a core structure; and at least one conductive through hole penetrating the core layers and the adhesive layer, and electrically connecting the circuit layers of the core layers. Accordingly, the present invention can improve the flexibility of circuit layout, and realize parallel connection between the capacitors to provide more capacitance.
Abstract:
A stack structure of a carrier board embedded with semiconductor components and a method for fabricating the same are proposed. The stack structure includes first and second carrier boards having a through hole respectively, first and second semiconductors component disposed in through holes of the first and second semiconductor components respectively, and a dielectric layer structure clamped between the first carrier board and the second carrier board and having a first dielectric layer formed on the first carrier board and an inactive surface of the first semiconductor component and filled in gaps between the first carrier board and the first semiconductor component, a second dielectric layer formed on the second carrier board and an inactive of the second semiconductor component and filled in gaps between the second carrier board and the second semiconductor component, and a bonding layer clamped between the first dielectric layer and the second dielectric layer.
Abstract:
A stack structure of carrier boards embedded with semiconductor components and a method for fabricating the same are proposed. A first carrier board and a second carrier board, each of which having at least one through hole, are provided. A first protecting layer and a second protecting layer are formed on a surface of the first and second carrier boards respectively. At least one first semiconductor component and at least one second semiconductor component are disposed on the first and second protecting layers and accommodated in the first and second through holes respectively. A dielectric layer is laminated between the surfaces of the first and second carrier boards without the protecting layers formed thereon. Thus, a modularized package structure with reduced space waste is formed.
Abstract:
A packaging substrate having a chip embedded therein, comprises a first aluminum substrate having a first cavity therein; a second aluminum substrate having a second cavity corresponding to the first cavity; a dielectric layer disposed between the first aluminum substrate and the second aluminum substrate; a chip embedded in the first cavity and the second cavity, having an active surface with a plurality of electrode pads thereon; and one built-up structure disposed on the surface of the first aluminum substrate and the active surface of the chip, wherein the built-up structure has a plurality of conductive vias electrically connecting to the electrode pads. The substrate warpage is obviously reduced by the assistance of using aluminum or aluminum alloy as the material of the substrate. Also, a method of manufacturing a packaging substrate having a chip embedded therein is disclosed.
Abstract:
A carrier plate structure having a chip embedded therein, comprises an aluminum plate having plural through-holes extending from the upper surface to the lower surface of the aluminum plate, a cavity therein, and an aluminum oxide layer formed on the surface of the aluminum plate; a chip embedded in the cavity with an active surface having plural electrode pads set thereon; and at least one build-up structure mounted on the surface of the aluminum plate and the active surface of the chip, wherein the build-up structure comprises at least one conductive structure to electrically connecting to the electrode pad. Besides, a method of manufacturing a carrier plate structure having a chip embedded therein is disclosed.
Abstract:
A plate structure having a chip embedded therein, comprises an aluminum plate having at least one aluminum oxide layer formed on its surface, and a cavity therein; a chip embedded in the cavity, wherein the chip has an active surface; at least one electrode pad mounted on the active surface; and a build-up structure mounted on the surface of the aluminum plate, the active surface of the chip, and the surface of the electrode pad, wherein the build-up structure comprises at least one conducting to electrically connect to the electrode pad. Besides, a method of manufacturing a plate structure having a chip embedded therein is disclosed. Therefore, the plate structure having a chip embedded therein can be processed by a simple method to achieve the tenacity of aluminum and the rigidity of aluminum oxide.
Abstract:
A carrier structure for a semiconductor chip and a method for manufacturing the same are disclosed. The method includes the following steps: providing a carrier board having at least one through cavity, wherein a removable film is formed on the surface of the carrier board, and a semiconductor chip is temporarily fixed in the through cavity by the removable film; filling the gap between the through cavity of the carrier board and the semiconductor chip with an adhesive material in order to fix the semiconductor chip; and removing the removable film. The disclosed method can reduce the alignment error resulted from the tiny shift of the semiconductor chip caused by jitters before the semiconductor is fixed in the cavity, thereby to increase the accuracy of the alignment, to facilitate fine wiring, and to meet the trend toward compact size of semiconductor packages.
Abstract:
A circuit board structure with capacitor embedded therein and method for fabricating the same are disclosed, especially a core structure with capacitors embedded therein and method for fabricating the same. The structure comprising: a core board having a dielectric layer with a first surface and an opposite second surface; at least one high dielectric coefficient material layer formed in the dielectric layer, wherein a first electrode plate formed on the other surface of the high dielectric coefficient material layer; a first circuit layer formed on the first surface of the dielectric layer; a second circuit layer formed on the second surface of the dielectric layer and having a second electrode plate corresponding to the first electrode plate; and a first conductive via formed in the dielectric layer and electrically connecting the first electrode plate and the first circuit layer.