Abstract:
A circuit board structure embedded with semiconductor chips is proposed. A semiconductor chip is received in a cavity of a supporting board. A dielectric layer and a circuit layer are formed on the supporting board and the semiconductor chip. A plurality of hollow conductive vias are formed in the dielectric layer for electrically connecting the circuit layer to the semiconductor chip. By providing the hollow conductive vias of present invention, the separating results of different coefficients of expansion and thermal stress are prevented, and thus electrical function of products is ensured.
Abstract:
A circuit board structure having a capacitor array and an embedded electronic component and a method for fabricating the same are proposed. Two carrier boards and a high dielectric constant material layer are provided, wherein the carrier boards have electronic components embedded therein and one surface of each carrier board has a plurality of electrode plates. The two carrier boards are laminated with the dielectric constant material layer interposed between them. The electrode plates on the surfaces of the carrier boards are opposite to each other across the high dielectric constant material layer to constitute a capacitor array. Therefore, the capacitor assembly for design of electronic devices is provided.
Abstract:
A stack structure of circuit boards embedded with semiconductor chips is proposed. At least two circuit boards are provided. Each of the circuit boards includes circuit layers formed on surfaces thereof and at least one opening embedded with a semiconductor chip, wherein, the circuit layers have a plurality of conductive structures and electrically conductive pads, and the semiconductor chip has a plurality of electrode pads, and the conductive structures of the circuit layers are electrically conductive to the electrode pads of the semiconductor chip. At least one adhesive layer is formed between the two circuit boards and disposed with a conductive material corresponding in position to the electrically conductive pads of the circuit boards. Thus, a conductive path can be formed by the conductive material between the electrically conductive pads of the circuit boards, thereby establishing electrical connection between the two circuit boards.
Abstract:
A circuit board structure with capacitors embedded therein and a method for fabricating the same are disclosed. The structure comprises at least two core layers individually comprising a dielectric layer having two opposite surfaces, circuit layers disposed on the outsides of the two opposite surfaces of the dielectric layer, and at least two capacitors embedded respectively on the insides of the two opposite surfaces of the dielectric layer and individually electrically connecting with the circuit layer at the same side; at least one adhesive layer disposed between the core layers to combine the core layers as a core structure; and at least one conductive through hole penetrating the core layers and the adhesive layer, and electrically connecting the circuit layers of the core layers. Accordingly, the present invention can improve the flexibility of circuit layout, and realize parallel connection between the capacitors to provide more capacitance.
Abstract:
A circuit board structure embedded with semiconductor chips is proposed. A semiconductor chip is received in a cavity of a supporting board. A dielectric layer and a circuit layer are formed on the supporting board and the semiconductor chip. A plurality of hollow conductive vias are formed in the dielectric layer for electrically connecting the circuit layer to the semiconductor chip. By providing the hollow conductive vias of present invention, the separating results of different coefficients of expansion and thermal stress are prevented, and thus electrical function of products is ensured.
Abstract:
A circuit board structure having a capacitor array and an embedded electronic component and a method for fabricating the same are proposed. Two carrier boards and a high dielectric constant material layer are provided, wherein the carrier boards have electronic components embedded therein and one surface of each carrier board has a plurality of electrode plates. The two carrier boards are laminated with the dielectric constant material layer interposed between them. The electrode plates on the surfaces of the carrier boards are opposite to each other across the high dielectric constant material layer to constitute a capacitor array. Therefore, the capacitor assembly for design of electronic devices is provided.
Abstract:
A stack structure of circuit boards embedded with semiconductor components therein is proposed, which includes at least two semiconductor components embedded circuit boards, a plurality of conductive bumps, and at least one adhesive layer. The circuit boards are each formed with a circuit layer having a plurality of electrical connection pads. The conductive bumps are formed on the electrical connection pads of at least one of the circuit boards. The adhesive layer is formed between the circuit boards such that a portion of the adhesive layer between the conductive bumps and the electrical connection pads, or between the opposing conductive bumps, forms a conductive channel and thereby forms an electrical connection between the circuit boards.
Abstract:
A structure of a packaging substrate having capacitors embedded therein is disclosed. The structure comprises a core substrate, a dielectric layer, and an outer circuit layer. The core substrate comprises an inner circuit layer. The dielectric layer is disposed at both sides of the core substrate, having first conductive vias each connecting to the inner circuit layer through a piece of outer electrode plate, a piece of high dielectric material layer, a piece of inner electrode plate, and a piece of adhesive layer, in sequence. The outer circuit layer is disposed on the surface of each of the dielectric layers. Herein, the capacitor is composed of a piece of the outer electrode plate, the high dielectric material layer and the inner electrode plate. The invention further comprises a method for manufacturing the same. This can achieve low costs, avoid the formation of voids, and reduce parasitic capacitance.
Abstract:
A multi-chip semiconductor package structure is disclosed according to the present invention. The package structure includes: a carrier board having a first surface, a second surface, and at least one opening penetrating the first and second surfaces, the first and second surfaces each being formed with a plurality of electrically connecting pads thereon; a semiconductor component received in the opening and having first and second active surfaces, the first and second active surfaces each being formed with a plurality of electrode pads thereon; a plurality of first conductive elements electrically connected to the electrically connecting pads on the second surface of the carrier board and the electrode pads on the second active surface of the semiconductor component; a semiconductor chip having an active surface and an inactive surface, the active surface having a plurality of electrode pads electrically connected to the electrically connecting pads on the first surface of the carrier board and the electrode pads on the first active surface of the semiconductor component; and a molding material formed on a portion of the second surface of the carrier board and the second active surface of the semiconductor component to cover the first conductive elements. The present invention provides a modularized structure capable of electrically connecting to other modules or stacked devices as well as enhancing electrical performance.
Abstract:
A multi-chip semiconductor package structure is disclosed, including a carrier board having a first and an opposing second surfaces and formed with at least an opening penetrating the first and second surfaces, wherein a plurality of electrically connecting pads are formed on the first and second surfaces of the carrier board, respectively; a semiconductor component disposed in the opening, the semiconductor component having a first and a second active surfaces each with a plurality of electrode pads being formed thereon; a third semiconductor chip having an active surface and an inactive surface, the active surface having a plurality of electrode pads formed thereon for electrically connecting with the electrically connecting pads on the first surface of the carrier board and the electrode pads on the first active surface of the semiconductor component; and a fourth semiconductor chip having an active surface and an inactive surface, the active surface having a plurality of electrode pads formed thereon for electrically connecting with the electrically connecting pads on the second surface of the carrier board and the electrode pads on the second active surface of the semiconductor component, thereby providing a modularized structure for electrically connecting with other modules or stack devices and enhancing electrical functionality.