Abstract:
The present invention provides a method of lithographic patterning. The method comprises: applying to a surface to be patterned a photoresist (18) comprising a polymer resin, a photocatalyst generator which generates a catalyst on exposure to actinic radiation, and a quencher; exposing the photoresist (18) to actinic radiation through a mask pattern (12); carrying out a post-exposure bake; and then developing the photoresist (18) with a developer to remove a portion of the photoresist which has been rendered soluble in the developer. Either the polymer resin is substantially insoluble in the developer prior to exposure to actinic radiation and rendered soluble in the developer by the action of the catalyst, and by the action of the quencher during the bake, or the polymer resin is soluble in the developer prior to exposure to actinic radiation and rendered substantially insoluble in the developer by the action of the catalyst, and by the action of the quencher during the bake.
Abstract:
Apparatus for regulating the temperature of a light emitting diode (LED). The apparatus includes a heat sink, an LED mount, and an LED mounted on the LED mount. The LED mount is configured to change shape in response to a change in temperature. The change in shape alters the position of the LED relative to the heat sink, for adjusting heat transfer between the LED and the heat sink. The LED mount may include a laminated portion such as a bi-metallic strip.
Abstract:
A method of forming a pattern in at least one device layer in or on a substrate comprises: coating the device layer with a first photoresist layer; exposing the first photoresist using a first mask; developing the first photoresist layer to form a first pattern on the substrate; coating the substrate with a protection layer; treating the protection layer to cause a change therein where it is in contact with the first photoresist, to render the changed protection layer substantially immune to a subsequent exposure and/or developing step; coating the substrate with a second photoresist layer; exposing the second photoresist layer using a second mask; and developing the second photoresist layer to form a second pattern on the substrate without significantly affecting the first pattern in the first photoresist layer, wherein the first and second patterns together define interspersed features having a spartial frequency greater than that of the features defined in each of the first and second patterns separately. The process has particular utility in defining source, drain and fin features of finFET devices with a smaller feature size than otherwise achievable with the prevailing lithography tools.
Abstract:
A display device comprises a substrate which carries an array of pixels. Each pixel comprises an array of apertures in the substrate, each aperture of the array having a maximum opening dimension less than the wavelength of the light to be transmitted through the aperture. The effective dielectric constant of the aperture and/or the dielectric constant of the substrate is varied, thereby to vary the light transmission characteristics of the pixel between transmission of at least one frequency in the visible spectrum and transmission of substantially no frequency in the visible spectrum.
Abstract:
A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
Abstract:
An apparatus comprising at least one measuring cell (10) is disclosed. The measuring cell comprises a first cavity (16 and a second cavity (18) perpendicular to the first cavity, the first cavity and the second cavity comprising an overlap at first respective ends and a reflective surface (20) at the opposite respective ends. A beam splitter (15) is located in the overlap and an electromagnetic radiation source (12) is arranged to project a beam of electromagnetic radiation onto the beam splitter (15) such that the beam is projected into each of the cavities. A phase detector (22) for detecting a phase difference between the respective electromagnetic radiation reflected by the first and second cavity (16; 18) is also provided. In addition, the apparatus has a fluid channel (26), at least a part of which runs parallel to the first cavity (16) such that the electromagnetic radiation projected into the first cavity extends into said part of the fluid channel. This allows for the interferometric detection of particles in the fluid channel.
Abstract:
The present invention relates to a calibration circuit, computer program product, and method of calibrating a junction temperature measurement of a semiconductor element, wherein respective forward voltages at junctions of the semiconductor element and a reference temperature sensor are measured, and an absolute ambient temperature is determined by using the reference temperature sensor, and the junction temperature of the semiconductor element is predicted based on the absolute ambient temperature and the measured forward voltages.
Abstract:
A light sensor device comprises a substrate (10) having a well (12) defined in one surface. At least one light sensor (14) is formed at the base of the well (12), and an optical light guide (18) in the form of a transparent tunnel (18) within an opaque body (20) extends from a top surface of the device down a sloped side wall of the well (12) to the location of the light sensor (14).
Abstract:
An apparatus comprising at least one measuring cell (10) is disclosed. The measuring cell comprises a first cavity (16 and a second cavity (18) perpendicular to the first cavity, the first cavity and the second cavity comprising an overlap at first respective ends and a reflective surface (20) at the opposite respective ends. A beam splitter (15) is located in the overlap and an electromagnetic radiation source (12) is arranged to project a beam of electromagnetic radiation onto the beam splitter (15) such that the beam is projected into each of the cavities. A phase detector (22) for detecting a phase difference between the respective electromagnetic radiation reflected by the first and second cavity (16; 18) is also provided. In addition, the apparatus has a fluid channel (26), at least a part of which runs parallel to the first cavity (16) such that the electromagnetic radiation projected into the first cavity extends into said part of the fluid channel. This allows for the interferometric detection of particles in the fluid channel.
Abstract:
A method of achieving frequency doubled lithographic patterning is described. An optical pattern (16) having a first period (p1) is used to expose conventional acid-catalysed photoresist (18) on substrate (20), leaving regions of high exposure (24), regions of low exposure (26) and intermediate regions (22). Processing proceeds leaving regions (24) which received high exposure very polar, i.e. hydrophilic, regions (26) of low exposure very apolar, i.e. hydrophobic, and the intermediate regions having intermediate polarity. A developer of intermediate polarity such as propylene glycol methyl ether acetate is then used to dissolve only the intermediate regions (22) leaving photoresist patterned to have a pitch (p2) half that of the optical period (p1). Alternatively, the photoresist is removed from the apolar and polar regions leaving only the intermediate regions (22) again with the same pitch (p2) half that of the optical period (p1).