Abstract:
A trench type Schottky device has a guard ring diffusion of constant depth between the outermost of an active trench and an outer surrounding termination trench. The junction curvature of the guard ring diffusion is suppressed or cut out by the trenches.
Abstract:
Merged P-i-N Schottky device in which the oppositely doped diffusions extend to a depth and have been spaced apart such that the device is capable of absorbing a reverse avalanche energy comparable to a Fast Recovery Epitaxial Diode having a comparatively deeper oppositely doped diffusion region.
Abstract:
A fast recovery diode has a single large area P/N junction surrounded by a termination region. The anode contact in contact with the central active area extends over the inner periphery of an oxide termination ring and an EQR metal ring extends over the outer periphery of the oxide termination ring. Platinum atoms are diffused into the back surface of the device. A three mask process is described. An amorphous silicon layer is added in a four mask process, and a plurality of spaced guard rings are added in a five mask process.
Abstract:
A fast recovery diode has a single large area P/N junction surrounded by a termination region. The anode contact in contact with the central active area extends over the inner periphery of an oxide termination ring and an EQR metal ring extends over the outer periphery of the oxide termination ring. Platinum atoms are diffused into the back surface of the device. A three mask process is described. An amorphous silicon layer is added in a four mask process, and a plurality of spaced guard rings are added in a five mask process.
Abstract:
A semiconductor device having a termination structure, which includes at least one spiral resistor disposed within a spiral trench and connected between two power poles of the device.
Abstract:
A temperature-sensing diode has an anode and a cathode disposed on top and an isolated, metallization layer on bottom of a diode die. For example, the temperature-sensing diode is a Schottky diode without a guard ring and any passivation, making the temperature-sensing diode inexpensive to fabricate, easy to attach in close proximity to a heat-generating device and resistant to electronic noise from high power devices and stray electronic signals. The location of the anode and cathode on the same surface of the diode package provides for easy connection, such as by wire bonds, with an external circuit for providing a constant forward bias current and for amplification of the output voltage signal by an operational amplifier. The isolated, metallization layer provides for easy attachment of the temperature-sensing diode in close proximity to heat-generating power devices. A dielectric film isolates the temperature-sensing diode from the metallization layer and underlying substrate.
Abstract:
A fast recovery diode has a single large area P/N junction surrounded by a termination region. The anode contact in contact with the central active area extends over the inner periphery of an oxide termination ring and an EQR metal ring extends over the outer periphery of the oxide termination ring. Platinum atoms are diffused into the back surface of the device. A three mask process is described. An amorphous silicon layer is added in a four mask process, and a plurality of spaced guard rings are added in a five mask process.
Abstract:
A trench schottky diode which includes a thin insulation layer on the sidewalls of its trenches and a relatively thicker insulation layer at the bottoms of its trenches.
Abstract:
A method for adjusting the resistivity in the surface of a semiconductive substrate including selective measurement and counter-doping of areas on a major surface of a semiconductive substrate.
Abstract:
In accordance with an embodiment of the present invention, a semiconductor module includes a first semiconductor device having a first plurality of leads including a first gate/base lead, a first drain/collector lead, and a first source/emitter lead. The module further includes a second semiconductor device and a circuit board. The second semiconductor device has a second plurality of leads including a second gate/base lead, a second drain/collector lead, and a second source/emitter lead. The circuit board has a plurality of mounting holes, wherein each of the first plurality of leads and the second plurality of leads is mounted into a respective one of the plurality of mounting holes. At the plurality of mounting holes, a first distance from the first gate/base lead to the second gate/base lead is different from a second distance from the first source/emitter lead to the second source/emitter lead.