摘要:
Integrated circuits with memory elements are provided. An integrated circuit may include logic circuitry formed in a first portion having complementary metal-oxide-semiconductor (CMOS) devices and may include at least a portion of the memory elements and associated memory circuitry formed in a second portion having nano-electromechanical (NEM) relay devices. The NEM and CMOS devices may be interconnected through vias in a dielectric stack. Devices in the first and second portions may receive respective power supply voltages. In one suitable arrangement, the memory elements may include two relay switches that provide nonvolatile storage characteristics and soft error upset (SEU) immunity. In another suitable arrangement, the memory elements may include first and second cross-coupled inverting circuits. The first inverting circuit may include relay switches, whereas the second inverting circuit includes only CMOS transistors. Memory elements configured in this way may be used to provide volatile storage characteristics and SEU immunity.
摘要:
Integrated circuits such as programmable logic device integrated circuits are provided that have configuration random-access memory elements. The configuration random-access memory elements are loaded with configuration data to customize programmable logic on the integrated circuits. Each memory element has a capacitor that stores data for that memory element. A pair of cross-coupled inverters are connected to the capacitor. The inverters ensure that the memory elements produce output control signals with voltages than range from one power supply rail to another. Each configuration random-access memory element may have a clear transistor. The capacitor may be formed in a dielectric layer that lies above the transistors of the inverters, the address transistor, and the clear transistor. The inverters may be powered with an elevated power supply voltage.
摘要:
An integrated circuit is provided with transistor body regions that may be independently biased. Some of the bodies may be forward body biased to lower threshold voltages and increase transistor switching speed. Some of the bodies may be reverse body biased to increase threshold voltages and decrease leakage current. The integrated circuit may be formed on a silicon substrate. Body bias isolation structures may be formed in the silicon substrate to isolate the bodies from each other. Body bias isolation structures may be formed from shallow trench isolation trenches. Doped regions may be formed at the bottom of the trenches using ion implantation. Oxide may be used to fill the trenches above the doped region. A deep well may be formed under the body regions. The deep well may contact the doped regions that are formed at the bottom of the trenches.
摘要:
The present invention optimizes the performance of integrated circuits by adjusting the circuit operating voltage using feedback on process/product parameters. To determine a desired value for the operating voltage of an integrated circuit, a preferred embodiment provides for on-wafer probing of one or more reference circuit structures to measure at least one electrical or operational parameter of the one or more reference circuit structures; determining an adjusted value for the operating voltage based on the measured parameter; and establishing the adjusted value as the desired value for the operating voltage. The reference circuit structures may comprise process control monitor structures or structures in other integrated circuits fabricated in the same production run. In an alternative embodiment, the one or more parameters are directly measured from the integrated circuit whose operating voltage is being adjusted.
摘要:
A programmable logic device (PLD) includes a delay circuit and a body-bias generator. The delay circuit has a delay configured to represent a delay of user circuit implement in the PLD. The body-bias generator is configured to adjust the body bias of a transistor within the user circuit. The body-bias generator adjusts the body bias of the transistor in response to a level derived from the signal propagation delay of the delay circuit.
摘要:
A programmable logic device (PLD) includes a delay circuit and a body-bias generator. The delay circuit has a delay configured to represent a delay of user circuit implement in the PLD. The body-bias generator is configured to adjust the body bias of a transistor within the user circuit. The body-bias generator adjusts the body bias of the transistor in response to a level derived from the signal propagation delay of the delay circuit.
摘要:
A configuration memory cell (“CRAM”) for a field programmable gate array (“FPGA”) integrated circuit (“IC”) device is given increased resistance to single event upset (“SEU”). A portion of the gate structure of the input node of the CRAM is increased in size relative to the nominal size of the remainder of the gate structure. Part of the enlarged gate structure is located capacitively adjacent to an N-well region of the IC, and another part is located capacitively adjacent to a P-well region of the IC. This arrangement gives the input node increased capacitance to resist SEU, regardless of the logical level of the input node. The invention is also applicable to any node of any type of memory cell for which increased resistance to SEU is desired.
摘要:
An integrated circuit having an enhanced on-off swing for pass gate transistors is provided. The integrated circuit includes a core region that includes core transistors and pass gate transistors. The core transistors have a gate oxide associated with a first thickness, the pass transistors having a gate oxide associated with a thickness that is less than the first thickness. In one embodiment, the material used for the gate oxide of the pass gate transistors has a dielectric constant that is greater than four, while the material used for the gate oxide of the core transistors has a dielectric constant that is less than or equal to four. A method for manufacturing an integrated circuit is also provided.
摘要:
A configuration memory cell (“CRAM”) for a field programmable gate array (“FPGA”) integrated circuit (“IC”) device is given increased resistance to single event upset (“SEU”). A portion of the gate structure of the input node of the CRAM is increased in size relative to the nominal size of the remainder of the gate structure. Part of the enlarged gate structure is located capacitively adjacent to an N-well region of the IC, and another part is located capacitively adjacent to a P-well region of the IC. This arrangement gives the input node increased capacitance to resist SEU, regardless of the logical level of the input node. The invention is also applicable to any node of any type of memory cell for which increased resistance to SEU is desired.
摘要:
Techniques for combining volatile and non-volatile programmable logic into one integrated circuit (IC) are provided. An IC is segregated into two portions. A first block of programmable logic is configured by bits stored in on-chip non-volatile memory. A second block of programmable logic is configured by bits stored in off-chip memory. The function of IO banks on the IC is multiplexed between the two logic blocks of the IC. The programmable logic in the first block can be configured and fully functional in a fraction of the time that the programmable logic in the second block can be configured. The programmable logic in the first block can configure fast enough and have enough independence to assist in the configuration of the second block. The non-volatile memory can also provide security features to a user design, such as encryption.