Abstract:
An embodiment is directed to a battery, including a housing, an electrode assembly in the housing, the electrode assembly including a first electrode member, a separator, and a second electrode member wound about a first axis, the first axis extending in a first direction, the electrode assembly having a thickness in a second direction orthogonal to the first direction and having a length in a third direction orthogonal to the first and second directions, the length being greater than the thickness, the electrode assembly having a curvature about a second axis that is parallel to the first axis, and first and second electrode tabs, the first electrode tab and the second electrode tab being connected to the first electrode member and the second electrode member, respectively, the first and second electrode tabs protruding from the electrode assembly in a direction orthogonal to the first direction.
Abstract:
A method of manufacturing a semiconductor device includes forming first and second gate structures on a substrate in first and second regions, respectively, forming a first capping layer on the substrate by a first high density plasma process, such that the first capping layer covers the first and second gate structures except for sidewalls thereof, removing a portion of the first capping layer in the first region, removing an upper portion of the substrate in the first region using the first gate structure as an etching mask to form a first trench, and forming a first epitaxial layer to fill the first trench.
Abstract:
A semiconductor device includes a semiconductor substrate including a plurality of active areas defined by a device isolation layer, a gate line structure crossing the plurality of active areas, a buffer insulation layer on the semiconductor substrate, the buffer insulation layer contacting a portion of a side of the gate line structure, a contact etching stopper layer on the buffer insulation layer, and a contact plug passing through the buffer insulation layer and the contact etching stopper layer to be connected to the plurality of active areas.
Abstract:
A semiconductor device can include a first gate electrode including a gate insulating pattern, a gate conductive pattern and a capping pattern that are sequentially stacked on a semiconductor substrate, and a first spacer of a low dielectric constant disposed on a lower sidewall of the first gate electrode. A second spacer of a high dielectric constant, that is greater than the low dielectric constant, is disposed on an upper sidewall of the first gate electrode above the first spacer.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A redundancy circuit for activating redundant memory cells when a semiconductor memory device is found to have defective memory cells, which redundancy circuit comprises, in order to overcome the problems of an address reset and a precharging of the first node which determines the redundancy addressing output signal of the redundancy circuit, additional switching circuit which is controlled by a clock signal of the memory device being made to be connected between a ground node and a switching circuit connected to a plurality of fuses, and a precharging circuit for precharging the first node to a high voltage level being made to also controlled by the clock signal.
Abstract:
A semiconductor memory device stably operates over a wide range of the power supply voltage by including a power supply voltage level detector for generating detecting signals according to predetermined levels of the power supply voltage and an oscillator for generating a frequency-controlled oscillation pulse whose frequency is changeable according to the detecting signals. Thus, a boosting ratio of a boosting circuit, the refresh period of a refresh circuit and the substrate voltage of a substrate voltage generator can be adaptively changeable according to the variation of the power supply voltage.
Abstract:
A semiconductor substrate and a semiconductor device are provided. The semiconductor substrate includes a base substrate, a first silicon germanium layer on the base substrate and a second silicon germanium layer on the first silicon germanium layer. A germanium fraction of the second silicon germanium layer decreases in the direction away from the base substrate, and a germanium fraction of a lowermost part of the second silicon germanium layer is greater than a germanium fraction of an uppermost part of the first silicon germanium layer.
Abstract:
A semiconductor device includes a buffer layer on a semiconductor substrate including first and second regions, a first channel layer on the buffer layer of the first region, a second channel layer on the buffer layer of the second region, and a spacer layer between the second channel layer and the buffer layer. The buffer layer, the first and second channel layers, and the spacer layer are formed of semiconductor materials including germanium. A germanium concentration difference between the first and second channel layers is greater than a germanium concentration difference between the buffer layer and the second channel layer. The spacer layer has a germanium concentration gradient.
Abstract:
Disclosed is a transfer film which is transferred to an injection molding product. The transfer film includes a protective layer a printing layer which is stacked on the protective layer; a metal deposition layer which is deposited on the printing layer so as to have an island structure and thus to provide non-conductive property; and adhesive layer which is deposited on the metal deposition layer, thereby providing metal color and non-conductive property.