Abstract:
Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
Abstract:
A slurry for chemical mechanical planarization includes water, 1-3 wt. % of abrasive particles having an average diameter of at least 10 nm and less than 100 nm and an outer surface of ceria, and ½-3 wt. % of at least one amine.
Abstract:
Systems and methods for forming films on the surface of a substrate are described. The systems possess aerosol generators which form droplets from a liquid solution made from a solvent and a deposition precursor. A carrier gas may be flowed through the liquid solution and push the droplets toward a substrate placed in a substrate processing region. The droplets pass into the substrate processing region and chemically react with the substrate to form films. The temperature of the substrate may be maintained below the boiling temperature of the solvent during film formation. The solvent imparts a flowability to the forming film and enable the depositing film to flow along the surface of a patterned substrate during formation prior to solidifying. The flowable film results in bottom-up gapfill inside narrow high-aspect ratio gaps in the patterned substrate.
Abstract:
Systems and methods of etching a semiconductor substrate may include flowing an oxygen-containing precursor into a substrate processing region of a semiconductor processing chamber. The substrate processing region may house the semiconductor substrate, and the semiconductor substrate may include an exposed metal-containing material. The methods may include flowing a nitrogen-containing precursor into the substrate processing region. The methods may further include removing an amount of the metal-containing material.
Abstract:
Systems and methods for forming films on the surface of a substrate are described. The systems possess aerosol generators which form droplets from a liquid solution made from a solvent and a deposition precursor. A carrier gas may be flowed through the liquid solution and push the droplets toward a substrate placed in a substrate processing region. The droplets pass into the substrate processing region and chemically react with the substrate to form films. The temperature of the substrate may be maintained below the boiling temperature of the solvent during film formation. The solvent imparts a flowability to the forming film and enable the depositing film to flow along the surface of a patterned substrate during formation prior to solidifying. The flowable film results in bottom-up gapfill inside narrow high-aspect ratio gaps in the patterned substrate.
Abstract:
A slurry for selective chemical mechanical polishing of a copper layer is disclosed. The slurry includes either porous zeolite abrasive particles of substantially homogeneous composition having an average pore diameter of approximately 0.1-6 nanometers or hexagonal boron nitride abrasive particles. The slurry also includes an organic complexing compound that is 0.1-25 wt. % of the slurry, an oxidizer that is 0.1-10 wt. % of the slurry, and a solvent. A chemical mechanical polishing method for using the slurry is also disclosed.