Abstract:
A method for forming a silicon-containing epitaxial layer is disclosed. The method may include, heating a substrate to a temperature of less than approximately 950° C. and exposing the substrate to a first silicon source comprising a hydrogenated silicon source, a second silicon source, a dopant source, and a halogen source. The method may also include depositing a silicon-containing epitaxial layer wherein the dopant concentration within the silicon-containing epitaxial layer is greater than 3×1021 atoms per cubic centimeter.
Abstract:
A gas distribution system is disclosed in order to obtain better film uniformity on a substrate in a cross-flow reactor. The better film uniformity may be achieved by an asymmetric bias on individual injection ports of the gas distribution system. The gas distribution may allow for varied tunability of the film properties.
Abstract:
Methods of forming silicon germanium tin (SiGexGe1−xSny) films are disclosed. Exemplary methods include growing films including silicon, germanium and tin in an epitaxial chemical vapor deposition reactor. Exemplary methods are suitable for high volume manufacturing. Also disclosed are structures and devices including silicon germanium tin films.
Abstract:
Methods of forming p-type doped germanium-tin layers, systems for forming the p-type doped germanium-tin layers, and structures including the p-type doped germanium-tin layers are disclosed. The p-type doped germanium-tin layers include an n-type dopant, which allows relatively high levels of tin and/or p-type dopant to be included into the p-type doped germanium-tin layers.
Abstract:
A method of forming a silicon germanium layer on a surface of a substrate and a system for forming a silicon germanium layer are disclosed. Examples of the disclosure provide a method that includes providing a plurality of growth precursors to control and/or promote parasitic gas-phase and surface reactions, such that greater control of the film (e.g., thickness and/or composition) uniformity can be realized.
Abstract:
Methods and systems for forming structures including one or more layers comprising silicon germanium and one or more layers comprising silicon are disclosed. Exemplary methods can include using a surfactant, using particular precursors, and/or using a transition step to improve an interface between adjacent layers comprising silicon germanium and comprising silicon.
Abstract:
A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
Abstract:
A method for depositing a Group IV semiconductor on a surface of a substrate is disclosed. The method may include: providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The methods may further include: exposing the substrate to at least one Group IV precursor and exposing the substrate to at least one Group IIIA dopant precursor; wherein the at least one Group IIIA dopant precursor comprises a borohydride, an organic borohydride, a halide, or an organohalide. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
Abstract:
A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
Abstract:
A method for forming a forming a silicon germanium tin (SiGeSn) layer is disclosed. The method may include, providing a substrate within a reaction chamber, exposing the substrate to a pre-deposition precursor pulse, which comprises tin tetrachloride (SnCl4), exposing the substrate to a deposition precursor gas mixture comprising a hydrogenated silicon source, germane (GeH4), and tin tetrachloride (SnCl4), and depositing the silicon germanium tin (SiGeSn) layer over a surface of the substrate. Semiconductor device structures including a silicon germanium tin (SiGeSn) layer formed by the methods of the disclosure are also provided.