Abstract:
Particulate cleaning assemblies and methods for cleaning are disclosed. In one example, a device for removing particles from a backside surface of a substrate is described. The device includes a chamber body with a substrate chucking device, a particulate cleaning article positioned over the substrate supporting surface, an optical sensing device positioned under the particulate cleaning article and a substrate positioning device separates the particulate cleaning article and a substrate. In another example, a method for removing particles from a substrate is disclosed. The method includes positioning a substrate with a processing surface and a supporting surface in a process chamber. At least a portion of the substrate can be chucked to a substrate chucking device, the substrate chucking device having a substrate supporting surface with a particulate cleaning article positioned thereon. The substrate is then separated from the particulate cleaning article leaving particles behind.
Abstract:
An additive manufacturing system includes a platen, a feed material dispenser apparatus configured to deliver a feed material over the platen, a laser configured to produce a laser beam, a controller configured to direct the laser beam to locations specified by data stored in a computer-readable medium to cause the feed material to fuse, and a plasma source configured to produce ions that are directed to substantially the same location on the platen as the laser beam.
Abstract:
Embodiments of the disclosure provide methods and system for correcting lithographic film stress/strain variations on a semiconductor substrate using laser energy treatment process. In one embodiment, a method for correcting film stress/strain variations on a substrate includes performing a measurement process in a metrology tool on a substrate to obtain a substrate distortion or an overlay error map, determining dose of laser energy in a computing system to correct film stress/strain variations or substrate distortion based on the overlay error map, and providing a laser energy treatment recipe to a laser energy apparatus based on the dose of laser energy determined to correct substrate distortion or film stress/strain variations.
Abstract:
Embodiments herein provide apparatus and methods for performing a deposition and a patterning process on a spacer layer with good profile control in multiple patterning processes. In one embodiment, a method for depositing and patterning a spacer layer during a multiple patterning process includes conformally forming a spacer layer on an outer surface of a patterned structure disposed on a substrate, wherein the patterned structure has a first group of openings defined therebetween, selectively treating a first portion of the spacer layer formed on the substrate without treating a second portion of the spacer layer, and selectively removing the treated first portion of the spacer layer.
Abstract:
Embodiments described herein provide for a method of forming an etch selective hardmask. An amorphous carbon hardmask is implanted with various dopants to increase the hardness and density of the hardmask. The ion implantation of the amorphous carbon hardmask also maintains or reduces the internal stress of the hardmask. The etch selective hardmask generally provides for improved patterning in advanced NAND and DRAM devices.
Abstract:
A method and apparatus for depositing a carbon compound on a substrate includes using an inductively coupled plasma (ICP) chamber with a chamber body, a lid, an interior volume, a pumping apparatus, and a gas delivery system and a pedestal for supporting a substrate disposed within the interior volume of the ICP chamber, the pedestal has an upper portion formed from aluminum nitride with an upper surface that is configured to support and heat a substrate with embedded heating elements and a lower portion with a tube-like structure formed from aluminum nitride that is configured to support the upper portion and house electrodes for supplying power to the embedded heating elements of the upper portion, and the pedestal is configured to heat the substrate during deposition of a carbon compound film.
Abstract:
The present disclosure provides methods for performing an annealing process on a metal containing layer in TFT display applications, semiconductor or memory applications. In one example, a method of forming a metal containing layer on a substrate includes supplying an oxygen containing gas mixture on a substrate in a processing chamber, the substrate comprising a metal containing layer disposed on an optically transparent substrate, maintaining the oxygen containing gas mixture in the processing chamber at a process pressure between about 2 bar and about 50 bar, and thermally annealing the metal containing layer in the presence of the oxygen containing gas mixture.
Abstract:
An annealing system is provided that includes a chamber body that defines a chamber, a support to hold a workpiece and a robot to insert the workpiece into the chamber. The annealing system also includes a first gas supply to provide a hydrogen gas, a pressure source coupled to the chamber to raise a pressure in the chamber to at least 5 atmospheres, and a controller configured to cause the robot to transport a workpiece having a metal film thereon into the chamber, where the metal film contains fluorine on a surface or embedded within the metal film, to cause the first gas supply to supply the hydrogen gas to the chamber and form atomic hydrogen therein, and to cause the pressure source to raise a pressure in the chamber to at least 5 atmospheres while the workpiece is held on the support in the chamber.
Abstract:
A method for enhancing the depth of focus process window during a lithography process includes applying a photoresist layer comprising a photoacid generator on a material layer disposed on a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and dynamically changing a frequency of the electric field as generated while providing the thermal energy to the photoresist layer.
Abstract:
A method of forming graphene layers is disclosed. A method of improving graphene deposition is also disclosed. Some methods are advantageously performed at lower temperatures. Some methods advantageously provide graphene layers with lower resistance. Some methods advantageously provide graphene layers in a relatively short period of time.