Abstract:
An electroplating apparatus has one or more membrane tube rings which act as electric field shields, to provide advantageous plating characteristics at the perimeter of a work piece. The membrane tube rings may be filled with fluids having different conductivity, to change the shielding effect as desired for electroplating different types of substrates. The membrane tube rings may optionally be provided in or on a diffuser plate in the vessel of the apparatus.
Abstract:
In an electroplating processor having at least one anode and one thief electrode, reference electrodes are used to measure a voltage gradient in the electrolyte near the edge of the wafer. The voltage gradient is used to calculate the current at the wafer surface using a control volume/current balance technique. The fraction of the total wafer current flowing to the edge region of the wafer is determined and compared to a target value. The processor controller changes at least one of the anode and thief currents to bring the actual edge region current toward the target current.
Abstract:
Method and systems for cleaning and wetting a semiconductor substrate, are provided. Methods and systems include forming an atmosphere in a basin housing the semiconductor substrate with a gas having a higher solubility in a wetting agent than oxygen. Methods and systems include spraying the wetting agent with a spray head onto the substrate while maintaining the atmosphere. Methods and systems include rotationally translating the semiconductor substrate, the spray head, or both the semiconductor substrate and the spray head, Methods and systems include wetting a plurality of features defined in the substrate.
Abstract:
A method of plating substrates may include placing a substrate in a plating chamber comprising a liquid, and applying a current to the liquid in the plating chamber to deposit a metal on exposed portions of the substrate, where the current may include alternating cycles of a forward plating current and a reverse deplating current. To determine the current characteristics, a model of a substrate may be simulated during the plating process to generate data points that relate characteristics of the plating process and a pattern on the substrate to a range nonuniformity of material formed on the substrate during the plating process. Using information from the data points, values for the forward and reverse currents may be derived and provided to the plating chamber to execute the plating process.
Abstract:
A system may include a first semiconductor processing station configured to deposit a material on a first semiconductor wafer, a second semiconductor processing station configured perform measurements indicative of a thickness of the material after the material has been deposited on the first semiconductor wafer, and a controller. The controller may be configured to receive the measurements from the second station; provide an input based on the measurements to a trained model that is configured to generate an output that adjusts an operating parameter of the first station such that the thickness of the material is closer to a target thickness; and causing the first station to deposit the material on a second wafer using the operating parameter as adjusted by the output.
Abstract:
A method of plating substrates may include placing a substrate in a plating chamber comprising a liquid, and applying a current to the liquid in the plating chamber to deposit a metal on exposed portions of the substrate, where the current may include alternating cycles of a forward plating current and a reverse deplating current. To determine the current characteristics, a model of a substrate may be simulated during the plating process to generate data points that relate characteristics of the plating process and a pattern on the substrate to a range nonuniformity of material formed on the substrate during the plating process. Using information from the data points, values for the forward and reverse currents may be derived and provided to the plating chamber to execute the plating process.
Abstract:
Systems and methods for electroplating are described. The electroplating system may include a vessel configured to hold a first portion of a liquid electrolyte. The system may also include a substrate holder configured for holding a substrate in the vessel. The system may further include a first reservoir in fluid communication with the vessel. In addition, the system may include a second reservoir in fluid communication with the vessel. Furthermore, the system may include a first mechanism configured to expel a second portion of the liquid electrolyte from the first reservoir into the vessel. The system may also include a second mechanism configured to take in a third potion of the liquid electrolyte from the vessel into the second reservoir when the second portion of the liquid electrolyte is expelled from the first reservoir. Methods may include oscillating flow of the electrolyte within the vessel.
Abstract:
Electroplating apparatus agitates electrolyte to provide high velocity fluid flows at the surface of a wafer. The apparatus includes a paddle which provides uniform high mass transfer over the entire wafer, even with a relatively large gap between the paddle and the wafer. Consequently, the processor may have an electric field shield positioned between the paddle and the wafer for effective shielding at the edges of the wafer. The influence of the paddle on the electric field across the wafer is reduced as the paddle is spaced relatively farther from the wafer.
Abstract:
An electroplating apparatus has a vessel for holding electrolyte. A head has a rotor including a contact ring for holding a wafer having a notch. The contact ring includes a perimeter voltage ring having perimeter contact fingers for contacting the wafer around the perimeter of the wafer, except at the notch. The contact ring also has a notch contact segment having one or more notch contact fingers for contacting the wafer at the notch. The perimeter voltage ring is insulated from the notch contact segment. A negative voltage source is connected to the perimeter voltage ring, and a positive voltage source connected to the notch contact segment. The positive voltage applied at the notch reduces the current crowding effect at the notch. The wafer is plated with a film having more uniform thickness.
Abstract:
In electroplating apparatus, a paddle or agitator agitates electrolyte in a vessel to provide high velocity fluid flow at the surface of a wafer. The agitator is designed and/or moved to also selectively shield part of the wafer, for example the edge of the wafer, from the electric field in the vessel. Selectively shielding may be achieved by temporally shifting the average position of the agitator towards one side of the wafer, by omitting or shortening slots in the agitator, and/or by synchronizing movement of the agitator with rotation of the wafer.