Abstract:
A method of introducing N/P dopants in PMOS and NMOS fins at the SSRW layer without complicated processing and the resulting device are provided. Embodiments include forming a plurality of p-type and n-type fins on a substrate, the plurality of p-type and n-type fins formed with an ISSG or pad oxide layer; performing an n-well implant into the substrate through the ISSG or pad oxide layer; performing a first SRPD on the ISSG or pad oxide layer of the plurality of p-type fins; performing a p-well implant into the substrate through the ISSG or pad oxide layer; performing a second SRPD on the ISSG or pad oxide layer of the plurality of n-type fins; and driving the n-well and p-well implants and the SRPD dopants into a portion of the plurality of p-type and n-type fins.
Abstract:
A method of forming a nanowire device includes forming semiconductor material layers above a semiconductor substrate, forming a gate structure above the semiconductor material layers, forming a first sidewall spacer adjacent to the gate structure and forming a second sidewall spacer adjacent to the first sidewall spacer. The method further includes patterning the semiconductor material layers such that each layer has first and second exposed end surfaces. The gate structure, the first sidewall spacer, and the second sidewall spacer are used in combination as an etch mask during the patterning process. The method further includes removing the first and second sidewall spacers, thereby exposing at least a portion of the patterned semiconductor material layers. The method further includes forming doped extension regions in at least the exposed portions of the patterned semiconductor material layers after removing the first and second sidewall spacers.
Abstract:
A method of lithographically cutting a Mx line before the Mx line is lithographically defined by patterning and the resulting 2DSAV device are provided. Embodiments include forming an a-Si dummy metal layer over a SiO2 layer; forming a first softmask stack over the a-Si dummy metal layer; patterning a plurality of vias through the first softmask stack down to the SiO2 layer; removing the first soft mask stack; forming first and second etch stop layers over the a-Si dummy metal layer, the first etch stop layer formed in the plurality of vias; forming a-Si mandrels on the second etch stop layer; forming oxide spacers on opposite sides of each a-Si mandrel; removing the a-Si mandrels; forming a-Si dummy metal lines in the a-Si dummy metal layer below the oxide spacers; and forming a SiOC layer between the a-Si dummy metal lines.
Abstract:
A method includes forming a plurality of sacrificial lines embedded in a first dielectric layer. A line merge opening and a line cut opening are formed in a hard mask layer formed above the first dielectric layer. Portions of the first dielectric layer exposed by the line merge opening are removed to define a line merge recess. A portion of a selected sacrificial line exposed by the line cut opening is removed to define a line cut recess between first and second segments of the selected sacrificial line. A second dielectric layer is formed in the line cut recess. The hard mask is removed. The plurality of sacrificial lines is replaced with a conductive material to define at least one line having third and fourth segments in locations previously occupied by the first and second segments and to define a line-merging conductive structure in the line merge recess.
Abstract:
A method includes forming a plurality of sacrificial lines embedded in a first dielectric layer. A line merge opening and a line cut opening are formed in a hard mask layer formed above the first dielectric layer. Portions of the first dielectric layer exposed by the line merge opening are removed to define a line merge recess. A portion of a selected sacrificial line exposed by the line cut opening is removed to define a line cut recess between first and second segments of the selected sacrificial line. A second dielectric layer is formed in the line cut recess. The hard mask is removed. The plurality of sacrificial lines is replaced with a conductive material to define at least one line having third and fourth segments in locations previously occupied by the first and second segments and to define a line-merging conductive structure in the line merge recess.
Abstract:
Embodiments of the present invention provide an improved structure and method of contact formation. A cap nitride is removed from a gate in a region that is distanced from a fin. This facilitates reduced process steps, allowing the gate and the source/drain regions to be opened in the same process step. Extreme Ultraviolet Lithography (EUVL) may be used to pattern the resist to form the contacts.
Abstract:
Embodiments of the present invention provide a multiple fin field effect transistor (finFET) with low-resistance gate structure. A metallization line is formed in parallel with the gate, and multiple contacts are formed over the fins which connect the metallization line to the gate. The metallization line provides reduced gate resistance, which allows fewer transistors to be used for providing In-Out (IO) functionality, thereby providing space savings that enable an increase in circuit density.
Abstract:
A method includes forming an isolation pillar between first and second active nanostructures for adjacent FETs. When a first WFM surrounding the second active nanostructure is removed as part of a WFM patterning process, creating a discontinuity in the first metal. The pillar or the discontinuity in the first metal on the part of the pillar prevent the etching from reaching and removing the first WFM on the first active nanostructure. The isolation pillar creates a gate cut isolation in a selected gate region, and can be shortened in another gate region to allow for gate sharing between adjacent FETs.
Abstract:
One illustrative method disclosed herein may include forming first and second via openings and forming conductive material for first and second conductive vias across substantially an entirety of an upper surface of a layer of insulating material and in the via openings. A patterned line etch mask layer is then formed above the conductive material, the etch mask having a first feature corresponding to a first conductive line and a second feature corresponding to a second conductive line, and performing at least one etching process to define the first and second conductive lines that are arranged in a tip-to-tip configuration. In this example, a first edge of the first conductive via is substantially aligned with a first end of the first conductive line and a second edge of the second conductive via is substantially aligned with a second end of the second conductive line.
Abstract:
Methods of patterning a structure. A first hardmask layer is deposited on a second hardmask layer. A cut is formed that penetrates through the first hardmask layer and the second hardmask layer. A block mask is formed in the cut. The first hardmask layer is patterned to form first lines penetrating through the first hardmask layer to the second hardmask layer with at least one of the first lines superimposed on the block mask. After patterning the first hardmask layer, the second hardmask layer is patterned to transfer the first lines from the first hardmask layer to the second hardmask layer to form second lines penetrating through the second hardmask layer. The second hardmask layer is etched with an isotropic etching process that removes the second hardmask layer selective to the first hardmask layer such that the second lines are widened relative to the first lines.