Abstract:
An electromechanical device comprises a substrate structure, a set of electrodes, one or more anchor trenches, and one or more multi-faced components. For example, each of the one or more multi-faced components comprises an isolation region formed on a first portion of the surface of the component, a high resistance region formed on a second portion of the surface of the component, and a low resistance region formed on a third portion of the surface of the component. For example, the synapse device is configured to provide an analog resistive output, ranging between the high resistance region and the low resistance region, from at least one of the set of electrodes in response to a pulsed voltage input to at least another one of the set of electrodes.
Abstract:
Circuits which self-destruct under radiation are provided. In one aspect, a method for creating a radiation-sensitive circuit is provided. The method includes the step of: connecting an integrated circuit to a power supply and to a ground in parallel with at least one dosimeter device, wherein the dosimeter device is configured to change from being an insulator to being a conductor under radiation. Radiation-sensitive circuits are also provided.
Abstract:
A semiconductor device includes a first dielectric layer formed from a thermally conductive dielectric material. Contacts are formed in the first dielectric layer, the planar contacts being spaced apart to form a gap therebetween. The thermally conductive dielectric material of the first dielectric layer is formed on lateral sides of the planar contacts and in the gap. A resistive element is formed laterally across the gap between the planar contacts and in direct contact with at least the thermally conductive dielectric material in the gap.
Abstract:
A method includes embedding high-z oxide nanoparticles in a semiconductor package of a semiconductor packaged assembly, wherein the high-z nanoparticles are operative to emit electron radiation when exposed to a radiation source to render a semiconductor device in the semiconductor package inoperable.
Abstract:
A magnetic trap is configured to arrange at least one diamagnetic rod. The magnetic trap includes first and second magnets on a substrate that forms the magnetic trap defining a template configured to self-assemble diamagnetic material. Each of the first and second magnets extends along a longitudinal direction to define a magnet length, and contact each other to define a contact line. The first magnet and the second magnet have a diametric magnetization in a direction perpendicular to the contact line and the longitudinal direction so as to generate a longitudinal energy potential that traps the diamagnetic rod along the longitudinal direction.
Abstract:
Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
Abstract:
Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
Abstract:
A transistor device includes an array of fin structures arranged on a substrate, each of the fin structures being vertically alternating stacks of a first isoelectric point material having a first isoelectric point and a second isoelectric point material having a second isoelectric point that is different than the first isoelectric point; one or more carbon nanotubes (CNTs) suspended between the fin structures and contacting a side surface of the second isoelectric point material in the fin structures; a gate wrapped around the array of CNTs; and source and drain contacts arranged over the fin structures; wherein each of the fin structures have a trapezoid shape or parallel sides that are oriented about 90° with respect to the substrate.
Abstract:
A magnetic trap is configured to arrange at least one diamagnetic rod. The magnetic trap includes first and second magnets on a substrate that forms the magnetic trap defining a template configured to self-assemble diamagnetic material. Each of the first and second magnets extends along a longitudinal direction to define a magnet length, and contact each other to define a contact line. The first magnet and the second magnet have a diametric magnetization in a direction perpendicular to the contact line and the longitudinal direction so as to generate a longitudinal energy potential that traps the diamagnetic rod along the longitudinal direction.
Abstract:
A method of arranging at least one carbon nanotube on a semiconductor substrate includes depositing the at least one carbon nanotube on a dielectric layer of the semiconductor device. The method further includes arranging the at least one carbon nanotube on the dielectric layer in response to applying a voltage potential to an electrically conductive electrode of the semiconductor device, and applying a ground potential to an electrically conductive semiconductor layer of the semiconductor device.