Abstract:
Disclosed is a method of fabricating an optical waveguide device including the steps of forming a mask over a waveguide core material layer so as to leave a portion of the layer exposed, and exposing the structure to an oxidizing environment to form an oxide layer on the waveguide core material layer at least in the exposed portion thereby defining the lateral dimension of the waveguide core. The resulting waveguide core has extremely smooth surfaces for low optical losses.
Abstract:
Embodiments of legacy compatible spatial multiplexing systems and methods are disclosed. One method embodiment, among others, comprises receiving long training symbols and cyclic shifted long training symbols corresponding to legacy preamble portions of packets corresponding to first and second transmit signals, receiving long training symbols and inverted cyclic shifted long training symbols corresponding to spatial multiplexing portions of packets corresponding to first and second transmit signals, and combining the symbols corresponding to the first and second transmit antennas to estimate the respective channels.
Abstract:
A method and system provides a way to achieve very high data rate expanded bandwidth (wide band) WLAN operations reusing existing single channel radio designs. The system provides a dual-channel form of operation for greater flexibility and performance across multiple platforms. Further, the system provides adaptive anti-aliasing techniques for eliminating aliasing due to adjacent channel waveform effects. These techniques mesh with existing systems cleanly.
Abstract:
A 10 MHz channelized orthogonal frequency division multiplexing (OFDM) transmitter is provided that communicates using a modified OFDM packet structure with a half-rate oscillator having standard accuracy. The transmitter has an inverse fast fourier transform (IFFT) data processor that appends an outer pair of data subcarriers on either end of an OFDM subcarrier profile. An IFFT long sync processor appends an outer pair of binary phase shift key (BPSK) subcarriers on either end of an OFDM long sync subcarrier profile. By copying or appending the information of the data subcarriers closest to zero Hz. to more robust locations, 10 MHz channelized OFDM can be achieved with half-rate clocks and 20 PPM oscillators.
Abstract:
An on-signal calibration system I and Q signals of a transmitter to remove distortions in the RF output signal. The transmitter generates I and Q values and converts, modulates and combines the I and Q values into the RF output signal for transmission. The calibration system includes a detector, a sampler, a selector, an imbalance estimator, and an IQ corrector. The detector senses the RF output signal and provides a detection signal indicative thereof. The sampler samples the detection signal and provides digital samples. The selector selects from among the digital samples that correspond to predetermined ranges of the I and Q values, or otherwise predetermined selection boxes at predetermined phases. The imbalance estimator determines at least one imbalance estimate based on selected digital samples. The IQ corrector corrects the I and Q values using at least one imbalance estimate.
Abstract:
An adaptive frequency equalization system providing an equalizer that has programmable taps that adjusts magnitude and phase of symbol information of a received signal and that provides equalized symbol information. The system includes a hard decision circuit that selects ideal symbol values using the equalized symbol information. A frequency response circuit determines frequency response update values using the ideal symbol values and the received signal. An adjust circuit updates stored frequency response information using the frequency response update values, and also updates the programmable taps of the equalizer using the stored frequency response information.
Abstract:
A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
Abstract:
A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.
Abstract:
A semiconductor-based optical modulator is presented that includes a separate phase control section to adjust the amount of chirp present in the modulated output signal. At least one section is added to the modulator configuration and driven to create a pure “phase” signal that will is added to the output signal and modify the eiφ term inherent in the modulation function. The phase modulation control section may be located within the modulator itself (with one segment on each arm, driven by the same input signal), or may be disposed “outside” of the modulator on either the input waveguiding section or the output waveguiding section. The phase control section may be formed to comprise multiple segments (of different lengths), with the overall phase added to the propagating signal controlled by selecting the different segments to be energized to impart a phase delay to a signal propagating through the energized section(s).
Abstract:
A planar, waveguide-based silicon Schottky barrier photodetector includes a third terminal in the form of a field plate to improve the responsivity of the detector. Preferably, a silicide used for the detection region is formed during a processing step where other silicide contact regions are being formed. The field plate is preferably formed as part of the first or second layer of CMOS metallization and is controlled by an applied voltage to modify the electric field in the vicinity of the detector's silicide layer. By modifying the electric field, the responsivity of the device is “tuned” so as to adjust the momentum of “hot” carriers (electrons or holes, depending on the conductivity of the silicon) with respect to the Schottky barrier of the device. The applied potential functions to align with the direction of momentum of the “hot” carriers in the preferred direction “normal” to the silicon-silicide interface, allowing for an increased number to move over the Schottky barrier and add to the generated photocurrent.