Abstract:
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The solid state lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure.
Abstract:
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The solid state lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure.
Abstract:
Etched trenches in a bond material for die singulation, and associated systems and methods are disclosed. A method for solid state transducer device singulation in accordance with one embodiment includes forming a plurality of trenches by etching through a metallic bond material forming a bond between a carrier substrate and a plurality of the dies and singulating the carrier substrate along the trenches to separate the dies. In particular embodiments, the trenches extend into the carrier substrate. In further particular embodiments, the dies are at least partially, encapsulated in a dielectric material.
Abstract:
Textured optoelectronic devices and associated methods of manufacture are disclosed herein. In several embodiments, a method of manufacturing a solid state optoelectronic device can include forming a conductive transparent texturing material on a substrate. The method can further include forming a transparent conductive material on the texturing material. Upon heating the device, the texturing material causes the conductive material to grow a plurality of protuberances. The protuberances can improve current spreading and light extraction from the device.
Abstract:
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The solid state lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure.
Abstract:
Semiconductor device assemblies having solid-state transducer (SST) devices and associated semiconductor devices, systems, and are disclosed herein. In one embodiment, a method of forming a semiconductor device assembly includes forming a support substrate, a transfer structure, and a plurality semiconductor structures between the support substrate and the transfer structure. The method further includes removing the support substrate to expose an active surface of the individual semiconductor structures and a trench between the individual semiconductor structures. The semiconductor structures can be attached to a carrier substrate that is optically transmissive such that the active surface can emit and/or receive the light through the carrier substrate. The individual semiconductor structures can then be processed on the carrier substrate with the support substrate removed. In some embodiments, the individual semiconductor structures are singulated from the semiconductor device assembly and include a section of the carrier substrate attached to each of the individual semiconductor structures.
Abstract:
Solid state lighting (“SSL”) devices with cellular arrays and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode includes a semiconductor material having a first surface and a second surface opposite the first surface. The semiconductor material has an aperture extending into the semiconductor material from the first surface. The light emitting diode also includes an active region in direct contact with the semiconductor material, and at least a portion of the active region is in the aperture of the semiconductor material.
Abstract:
Semiconductor lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The semiconductor lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure.
Abstract:
Discontinuous bonds for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a first substrate and a second substrate, with at least one of the first substrate and the second substrate having a plurality of solid-state transducers. The second substrate can include a plurality of projections and a plurality of intermediate regions and can be bonded to the first substrate with a discontinuous bond. Individual solid-state transducers can be disposed at least partially within corresponding intermediate regions and the discontinuous bond can include bonding material bonding the individual solid-state transducers to blind ends of corresponding intermediate regions. Associated methods and systems of discontinuous bonds for semiconductor devices are disclosed herein.
Abstract:
Textured optoelectronic devices and associated methods of manufacture are disclosed herein. In several embodiments, a method of manufacturing a solid state optoelectronic device can include forming a conductive transparent texturing material on a substrate. The method can further include forming a transparent conductive material on the texturing material. Upon heating the device, the texturing material causes the conductive material to grow a plurality of protuberances. The protuberances can improve current spreading and light extraction from the device.