Abstract:
A pixel circuit includes a photodiode in semiconductor material to accumulate image charge in response to incident light. A tri-gate charge transfer block coupled includes a single shared channel region the semiconductor material. A transfer gate, shutter gate, and switch gate are disposed proximate to the single shared channel region. The transfer gate transfers image charge accumulated in the photodiode to the single shared channel region in response to a transfer signal. The shutter gate transfers the image charge in the single shared channel region to a floating diffusion in the semiconductor material in response to a shutter signal. The switch gate is configured to couple the single shared channel region to a charge storage structure in the semiconductor material in response to a switch signal.
Abstract:
A pixel cell includes a photodiode disposed in a semiconductor material layer to accumulate image charge photogenerated in the photodiode in response to incident light. A storage transistor is coupled to the photodiode to store the image charge photogenerated in the photodiode. The storage transistor includes a storage gate disposed proximate a first surface of the semiconductor material layer. The storage gate includes a pair of vertical transfer gate (VTG) portions. Each one of the pair of VTG portions extends a first distance into the semiconductor material layer through the first surface of the semiconductor material layer. A storage node is disposed below the first surface of the semiconductor material layer and between the pair of VTG portions of the storage gate to store the image charge transferred from the photodiode in response to a storage signal.
Abstract:
An image sensor including a photodiode, a floating diffusion region, a first, second, and third doped region of a semiconductor material, and a first capacitor is presented. The photodiode is disposed in the semiconductor material to generate image charge in response to incident light. The floating diffusion region is disposed in the semiconductor material proximate to the photodiode. The floating diffusion region is at least partially surrounded by the first doped region of the semiconductor material. The second doped region and the third doped region of the semiconductor material each have an opposite polarity of the floating diffusion region and the first doped region. The floating diffusion region and at least part of the first doped region are laterally disposed between the second doped region and the third doped region.
Abstract:
An active depth imaging system and method of operating the same captures illuminator-on and illuminator-off image data with each of a first and second imager. The illuminator-on image data includes information representing an imaged scene and light emitted from an illuminator and reflected off of objects within the imaged scene. The illuminator-off image data includes information representing the imaged scene without the light emitted from the illuminator. For each image set captured by the first and second imagers, illuminator-off image data is subtracted from the illuminator-on image data to identify the illuminated light within the scene. The depth of an object at which the light is incident on then is determined by the subtracted image data of the first and second imagers.
Abstract:
Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity. The first source-follower transistor may be directly coupled to the first floating diffusion by a gate, the first source-follower to selectively output a first signal to a first bitline in response to enablement of a first row selection transistor, and the second source-follower transistor may be capacitively-coupled to the second floating diffusion, the second source-follower to selectively output a second signal to a second bitline in response to enablement of a second row selection transistor.
Abstract:
A pixel cell includes a photodiode disposed within a first semiconductor chip for accumulating an image charge in response to light incident upon the photodiode. A transfer transistor is disposed within the first semiconductor chip and coupled to the photodiode to transfer the image charge from the photodiode. A bias voltage generation circuit disposed within a second semiconductor chip for generating a bias voltage. The bias voltage generation circuit is coupled to the first semiconductor chip to bias the photodiode with the bias voltage. The bias voltage is negative with respect to a ground voltage of the second semiconductor chip. A floating diffusion is disposed within the second semiconductor chip. The transfer transistor is coupled to transfer the image charge from the photodiode on the first semiconductor chip to the floating diffusion on the second semiconductor chip.
Abstract:
An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode and a second photodiode. The first photodiode include a first doped region, a first lightly doped region, and a first highly doped region disposed between the first doped region and the first lightly doped region. The second photodiode disposed in has a second full well capacity substantially equal to a first full well capacity of the first photodiode. The second photodiode includes a second doped region, a second lightly doped region, and a second highly doped region disposed between the second doped region and the second lightly doped region. The first photodiode can be used to for measuring low light and the second photodiode can be used for measuring bright light.
Abstract:
An image sensor includes photosensitive regions, transfer transistors, and one or more shared charge-to-voltage mechanism. A method for reading out the image sensor includes enabling a first transfer transistor to transfer photo-generated charge from a first photosensitive region to a shared charge-to-voltage mechanism. The method also includes no more than partially enabling a second transfer transistor to partially turn on the second transfer transistor to increase a capacitance of the shared charge-to-voltage mechanism while the photo-generated charge is transferred from the first photosensitive region to the shared charge-to-voltage mechanism.
Abstract:
A pixel cell includes a photodiode disposed in an epitaxial layer in a first region of semiconductor material. A floating diffusion is disposed in a well region disposed in the epitaxial layer in the first region. A transfer transistor is disposed in the first region and coupled between the photodiode and the floating diffusion to selectively transfer image charge from the photodiode to the floating diffusion. A deep trench isolation (DTI) structure lined with a dielectric layer inside the DTI structure is disposed in the semiconductor material isolates the first region on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. Doped semiconductor material inside the DTI structure is selectively coupled to a readout pulse voltage in response to the transfer transistor selectively transferring the image charge from the photodiode to the floating diffusion.
Abstract:
A pixel cell includes a photodiode disposed in an epitaxial layer in a first region of semiconductor material. A floating diffusion is disposed in a well region disposed in the epitaxial layer in the first region. A transfer transistor is disposed in the first region and coupled between the photodiode and the floating diffusion to selectively transfer image charge from the photodiode to the floating diffusion. A deep trench isolation (DTI) structure lined with a dielectric layer inside the DTI structure is disposed in the semiconductor material isolates the first region on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. Doped semiconductor material inside the DTI structure is selectively coupled to a readout pulse voltage in response to the transfer transistor selectively transferring the image charge from the photodiode to the floating diffusion.