Abstract:
A method is provided for forming a silicon (Si) nanocrystal embedded Si oxide electroluminescence (EL) device with a mid-bandgap transition layer. The method provides a highly doped Si bottom electrode, and forms a mid-bandgap electrically insulating dielectric film overlying the electrode. A Si nanocrystal embedded SiOx film layer is formed overlying the mid-bandgap electrically insulating dielectric film, where X is less than 2, and a transparent top electrode overlies the Si nanocrystal embedded SiOx film layer. The bandgap of the mid-bandgap dielectric film is about half that of the bandgap of the Si nanocrystal embedded SiOx film. In one aspect, the Si nanocrystal embedded SiOx film has a bandgap (Eg) of about 10 electronvolts (eV) and mid-bandgap electrically insulating dielectric film has a bandgap of about 5 eV. By dividing the high-energy tunneling processes into two lower energy tunneling steps, potential damage due to high power hot electrons is reduced.
Abstract:
A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.
Abstract:
A method of performing a fluid-material assay employing a device including at least one active pixel having a sensor with an assay site functionalized for selected fluid-assay material. The method includes exposing the pixel's sensor assay site to such material, and in conjunction with such exposing, and employing the active nature of the pixel, remotely requesting from the pixel's sensor assay site an assay-result output report. The method further includes, in relation to the employing step, creating, relative to the sensor's assay site in the at least one pixel, a predetermined, pixel-specific electromagnetic field environment.
Abstract:
A pixel-by-pixel digitally-addressable, pixelated, fluid-assay, active-matrix micro-structure including plural pixels formed preferably on a glass or plastic substrate, wherein each pixel, formed utilizing low-temperature TFT and Si technology, includes (a) at least one functionalized, digitally-addressable assay sensor including at least one functionalized, digitally-addressable assay site which has been affinity-functionalized to respond to a selected, specific fluid-assay material, and (b) disposed operatively adjacent that sensor and its associated assay site, digitally-addressable and energizable electromagnetic field-creating structure which is selectively energizable to create, in the vicinity of the sensor and its associated assay site, a selected, ambient, electromagnetic field environment which is structured to assist, selectively and optionally only, in the reading-out of an assay-result response from the assay sensor and assay site.
Abstract:
Methods are provided for forming silicon dioxide (SiO2) on a silicon carbide (SiC) substrate. The method comprises: providing a SiC substrate; supplying an atmosphere including oxygen; performing a high-density (HD) plasma-based process; and, forming a SiO2 layer overlying the SiC substrate. Typically, performing the HD plasma-based process includes connecting a top electrode to an inductively coupled HD plasma source. In one aspect, SiO2 is grown on the SiC substrate. Then, an HD plasma oxidation process is performed that creates a reactive oxygen species and breaks the Si—C bonds in the SiC substrate, to form free Si and C atoms in the SiC substrate. The free Si atoms in the SiC substrate are bonded to the HD plasma-generated reactive oxygen species, and the SiO2 layer is grown.
Abstract:
A method is provided for fabricating a semiconductor nanoparticle embedded Si insulating film for short wavelength luminescence applications. The method provides a bottom electrode, and deposits a semiconductor nanoparticle embedded Si insulating film, including the element of N, O, or C, overlying the bottom electrode. After annealing, a semiconductor nanoparticle embedded Si insulating film has a peak photoluminescence (PL) at a wavelength in the range of 475 to 750 nanometers.
Abstract:
A digitally-addressable, pixelated, DNA fluid-assay, active-matrix micro-structure formed, utilizing low-temperature TFT and Si technology, on a substrate preferably made of glass or plastic, and including at least one pixel which is defined by (a) an addressable pixel site, (b) a sensor home structure disposed within that site for receiving and hosting a functionalized assay site possessing a DNA oligonucleotide probe, and (c) an addressable, pixel-site-specific, energy-field-producing functionalizer (preferably optical) operable to functionalize such a probe on the assay site. Each pixel may also include a pixel-integrated optical detector. Further disclosed are related methodology facets involving (1) the making of such a micro-structure (a) in a precursor form (without a functionalized probe), and thereafter (b) in a finalized/functionalized form (with such a probe), and (2) the ultimate use of a completed micro-structure in the performance of a DNA assay.
Abstract:
A method is provided for fabricating a semiconductor nanoparticle embedded Si insulating film for electroluminescence (EL) applications. The method provides a bottom electrode, and deposits a semiconductor nanoparticle embedded Si insulating film, including an element selected from a group consisting of N and C, overlying the bottom electrode. After annealing, a semiconductor nanoparticle embedded Si insulating film is formed having an extinction coefficient (k) in a range of 0.01-1.0, as measured at about 632 nanometers (nm), and a current density (J) of greater than 1 Ampere per square centimeter (A/cm2) at an applied electric field lower than 3 MV/cm. In another aspect, the annealed semiconductor nanoparticle embedded Si insulating film has an index of refraction (n) in a range of 1.8-3.0, as measured at 632 nm, with a current density of greater than 1 A/cm2 at an applied electric field lower than 3 MV/cm.
Abstract translation:提供了一种用于制造用于电致发光(EL)应用的半导体纳米颗粒嵌入的Si绝缘膜的方法。 该方法提供底部电极,并且沉积半导体纳米颗粒嵌入的Si绝缘膜,其包括选自N和C组成的组的元素,覆盖在底部电极上。 在退火之后,形成半导体纳米颗粒嵌入的Si绝缘膜,其消光系数(k)在0.01〜1.0的范围内,在大约632纳米(nm)测量,电流密度(J)大于1安培 在施加的电场低于3MV / cm下的平方厘米(A / cm 2)。 在另一方面,被退火的半导体纳米颗粒嵌入的Si绝缘膜的折射率(n)在632nm处测量的范围为1.8-3.0,在施加的电场下的电流密度大于1A / cm 2 低于3 MV / cm。
Abstract:
An erbium (Er)-doped silicon (Si) nanocrystalline embedded silicon oxide (SiOx) waveguide and associated fabrication method are presented. The method provides a bottom layer, and forms an Er-doped Si nanocrystalline embedded SiOx film waveguide overlying the bottom layer, having a minimum optical attenuation at about 1540 nanometers (nm). Then, a top layer is formed overlying the Er-doped SiOx film. The Er-doped SiOx film is formed by depositing a silicon rich silicon oxide (SRSO) film using a high density plasma chemical vapor deposition (HDPCVD) process and annealing the SRSO film. After implanting Er+ ions, the Er-doped SiOx film is annealed again. The Er-doped Si nanocrystalline SiOx film includes has a first refractive index (n) in the range of 1.46 to 2.30. The top and bottom layers have a second refractive index, less than the first refractive index.
Abstract:
A thin-film transistor (TFT) with a multilayer gate insulator is provided, along with a method for forming the same. The method comprises: forming a channel, first source/drain (S/D) region, and a second S/D region in a Silicon (Si) active layer; using a high-density plasma (HDP) source, growing a first layer of Silicon oxide (SiOx) from the Si active layer, to a first thickness, where x is less than, or equal to 2; depositing a second layer of SiOx having a second thickness, greater than the first thickness, overlying the first layer of SiOx; using the HDP source, additionally oxidizing the second layer of SiOx, wherein the first and second SiOx layers form a gate insulator; and, forming a gate electrode adjacent the gate insulator. In one aspect, the second Si oxide layer is deposited using a plasma-enhanced chemical vapor deposition (PECVD) process with tetraethylorthosilicate (TEOS) precursors.