Abstract:
A semiconductor device having a high on-state current is provided. The semiconductor device includes a first insulator; a first oxide over the first insulator; a first conductor and a second conductor that are apart from each other over the first oxide; a second insulator covering the first insulator, the first oxide, the first conductor, and the second conductor; a third insulator over the second insulator; a fourth insulator in contact with a first conductor, a side surface of the second conductor, a side surface of the second insulator, and a side surface of the third insulator; a fifth insulator that is over the first oxide and on an inner side of the fourth insulator; a third conductor on an inner side of the fifth insulator; and a sixth insulator that is in contact with a top surface of the fourth insulator and over the third insulator, the fifth insulator, and the third conductor. The fourth insulator is divided to be apart from each other over the first oxide.
Abstract:
A semiconductor device having high operation frequency is provided. The semiconductor device includes a transistor including a first conductive layer, a first insulating layer, a second insulating layer, a first oxide, a second oxide, a third oxide, a third insulating layer, and a second conductive layer that are stacked in this order, and a fourth insulating layer. The first conductive layer and the second conductive layer include a region overlapping with the second oxide. In a channel width direction of the transistor, a level of the bottom surface of the second oxide is from more than or equal to −5 nm to less than 0 nm when a level of a region of the bottom surface of the second conductive layer which does not overlap with the second oxide is regarded as a reference.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. The semiconductor device includes a transistor and a capacitor. The transistor includes a first conductor and a second insulator over a first insulator; a third insulator over the first conductor and the second insulator; a fourth insulator over the third insulator; a first oxide over the fourth insulator; a second oxide and a third oxide over the first oxide; a second conductor in contact with a top surface of the third insulator, a side surface of the fourth insulator, a side surface of the first oxide, a side surface of the second oxide, and a top surface of the second oxide; a third conductor in contact with the top surface of the third insulator, a side surface of the fourth insulator, a side surface of the first oxide, a side surface of the third oxide, and a top surface of the third oxide; a fourth oxide over the first oxide; a fifth insulator over the fourth oxide; and a fourth conductor over the fifth insulator. The capacitor includes a fifth conductor over the first insulator, the third insulator over the fifth conductor, and the second conductor over the third insulator.
Abstract:
A minute transistor is provided. Alternatively, a transistor with low parasitic capacitance is provided. Alternatively, a transistor having high frequency characteristics is provided. Alternatively, a novel transistor is provided.A transistor including a semiconductor, a first conductor, a second conductor, a third conductor, a first insulator, and a second insulator is manufactured by forming a hard mask layer including a fourth conductor over the second insulator, a third insulator over the fourth conductor, forming an opening portion in the second insulator with the hard mask layer as the mask, eliminating the hard mask layer by forming the opening portion, and forming the first insulator and the first conductor in the opening portion.
Abstract:
A miniaturized transistor, a transistor with low parasitic capacitance, a transistor with high frequency characteristics, or a semiconductor device including the transistor is provided. The semiconductor device includes a first insulator, an oxide semiconductor over the first insulator, a first conductor and a second conductor that are in contact with the oxide semiconductor, a second insulator that is over the first and second conductors and has an opening reaching the oxide semiconductor, a third insulator over the oxide semiconductor and the second insulator, and a fourth conductor over the third insulator. The first conductor includes a first region and a second region. The second conductor includes a third region and a fourth region. The second region faces the third region with the first conductor and the first insulator interposed therebetween. The second region is thinner than the first region. The third region is thinner than the fourth region.
Abstract:
The semiconductor device includes a first insulating layer; a first oxide insulating layer over the first insulating layer; an oxide semiconductor layer over the first oxide insulating layer; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a second oxide insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; a gate insulating layer over the second oxide insulating layer; a gate electrode layer over the gate insulating layer; a second insulating layer over the first insulating layer, the source electrode layer, the drain electrode layer, the second oxide insulating layer, the gate insulating layer, and the gate electrode layer; and a third insulating layer over the first insulating layer, the source electrode layer, the drain electrode layer, and the second insulating layer.
Abstract:
A highly reliable semiconductor device including a transistor using an oxide semiconductor is provided. In a semiconductor device including a bottom-gate transistor including an oxide semiconductor layer, a first insulating layer is formed in contact with the oxide semiconductor layer, and an oxygen doping treatment is performed thereon, whereby the first insulating layer is made to contain oxygen in excess of the stoichiometric composition. The formation of the second insulating layer over the first insulating layer enables excess oxygen included in the first insulating layer to be supplied efficiently to the oxide semiconductor layer. Accordingly, the highly reliable semiconductor device with stable electric characteristics can be provided.
Abstract:
A highly reliable semiconductor device and a method for manufacturing the semiconductor device are provided. In a semiconductor device including a bottom-gate transistor in which an insulating layer functioning as a channel protective film is provided over an oxide semiconductor film, elements contained in an etching gas can be prevented from remaining as impurities on a surface of the oxide semiconductor film by performing impurity-removing process after formation of an insulating layer provided over and in contact with the oxide semiconductor film and/or formation of source and drain electrode layers. The impurity concentration in the surface of the oxide semiconductor film is lower than or equal to 5×1018 atoms/cm3, preferably lower than or equal to 1×1018 atoms/cm3.
Abstract:
A highly reliable semiconductor device including a transistor using an oxide semiconductor is provided. In a semiconductor device including a bottom-gate transistor including an oxide semiconductor layer, a first insulating layer is formed in contact with the oxide semiconductor layer, and an oxygen doping treatment is performed thereon, whereby the first insulating layer is made to contain oxygen in excess of the stoichiometric composition. The formation of the second insulating layer over the first insulating layer enables excess oxygen included in the first insulating layer to be supplied efficiently to the oxide semiconductor layer. Accordingly, the highly reliable semiconductor device with stable electric characteristics can be provided.
Abstract:
A change in electrical characteristics of a semiconductor device including an interlayer insulating film over a transistor including an oxide semiconductor as a semiconductor film is suppressed. The structure includes a first insulating film which includes a void portion in a step region formed by a source electrode and a drain electrode over the semiconductor film and contains silicon oxide as a component, and a second insulating film containing silicon nitride, which is provided in contact with the first insulating film to cover the void portion in the first insulating film. The structure can prevent the void portion generated in the first insulating film from expanding outward.